Ecole GEOMDATA Fréjus - Sept 2018

A short introduction to Topologial Data Analysis

Frédéric Chazal and Marc Glisse
DataShape team
INRIA Saclay - Ile-de-France
frederic.chazal@inria.fr marc.glisse@inria.fr

Introduction

2017]

[3D images (porous rocks)]

Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with, possibly complex, topological/geometric structure.

What is Topological Data Analysis (TDA)?

Modern data carry complex, but important, geometric/topological structure!

- Well-founded mathematical methods to infer and exploit relevant topological and geometric features (feature engineering) from data for exploratory data analysis, Machine Learning,...
- New and innovative tools for complex data to be used with or in complement of other ML and AI tools.
- High quality, efficient and easy-to-use software for TDA tools.
 A recent and very active research field with already many successful applications

- Build a nested family of spaces (filtered simplicial complex) on top of data → multiscale topol. structure.
- Compute the persistent homology of the complex

 → multiscale topol. signature/features.
- ullet Compare the signatures of "close" data sets o robustness and stability results.
- Statistical properties of signatures/features.

- Build a nested family of spaces (filtered simplicial complex) on top of data → multiscale topol. structure.
- Compute the persistent homology of the complex

 → multiscale topol. signature/features.
- ullet Compare the signatures of "close" data sets o robustness and stability results.
- Statistical properties of signatures/features.

- Build a nested family of spaces (filtered simplicial complex) on top of data → multiscale topol. structure.
- Compute the persistent homology of the complex

 → multiscale topol. signature/features.
- ullet Compare the signatures of "close" data sets o robustness and stability results.
- Statistical properties of signatures/features.

- Build a nested family of spaces (filtered simplicial complex) on top of data → multiscale topol. structure.
- Compute the persistent homology of the complex

 → multiscale topol. signature/features.
- ullet Compare the signatures of "close" data sets o robustness and stability results.
- Statistical properties of signatures/features.

Persistence diagram

- Build a nested family of spaces (filtered simplicial complex) on top of data → multiscale topol. structure.
- Compute the persistent homology of the complex

 → multiscale topol. signature/features.
- ullet Compare the signatures of "close" data sets o robustness and stability results.
- Statistical properties of signatures/features.

Persistent homology for functions

Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function

Persistent homology for functions

Tracking and encoding the evolution of the connected components (0-dimensional homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional cycles through a vector space (or a group), the homology group whose dimension is the number of "independent" cycles (the Betti number).

Stability properties

Stability properties

Theorem (Stability):

For any tame functions $f, g : \mathbb{X} \to \mathbb{R}$, $d_B(D_f, D_g) \leq ||f - g||_{\infty}$.

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]

Comparing persistence diagrams

The bottleneck distance between two diagrams D_1 and D_2 is

$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

where Γ is the set of all the bijections between D_1 and D_2 and $||p-q||_{\infty} = \max(|x_p-x_q|,|y_p-y_q|)$.

 \rightarrow Persistence diagrams provide easy to compare topological signatures.

Some examples of applications

- Persistence-based clustering [C.,Guibas,Oudot,Skraba - J. ACM 2013]

- Analysis of force fields in granular media [Kramar, Mischaikow et al]

Some examples of applications

- Hand gesture recognition [Li, Ovsjanikov, C. - CVPR'14]

- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

Simplicial complexes

Given a set $P = \{p_0, \dots, p_k\} \subset \mathbb{R}^d$ of k+1 affinely independent points, the k-dimensional simplex σ , or k-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i \, p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \ge 0.$$

The points p_0, \ldots, p_k are called the vertices of σ .

Simplicial complexes

A (finite) simplicial complex K in \mathbb{R}^d is a (finite) collection of simplices such that:

- 1. any face of a simplex of K is a simplex of K,
- 2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^d$ is the union of the simplices of K.

Abstract simplicial complexes

Let $P = \{p_1, \dots p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions :

- 1. The elements of P belong to K.
- 2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

Let $\{e_1, \dots e_n\}$ a basis of \mathbb{R}^n . "The" geometric realization of K is the (geometric) subcomplex |K| of the simplex spanned by $e_1, \dots e_n$ such that:

$$[e_{i_0} \cdots e_{i_k}] \in |K| \text{ iff } \{p_{i_0}, \cdots, p_{i_k}\} \in K$$

|K| is a topological space (subspace of an Euclidean space)!

Abstract simplicial complexes

Let $P = \{p_1, \dots p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions :

- 1. The elements of P belong to K.
- 2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).

Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) \mathbb{S} built on top of a set \mathbb{X} is a family $(\mathbb{S}_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex $\overline{\mathbb{S}}$ with vertex set X s. t. $\mathbb{S}_a \subseteq \mathbb{S}_b$ for any $a \leq b$.
- More generally, filtration = nested family of spaces.

Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) \mathbb{S} built on top of a set \mathbb{X} is a family $(\mathbb{S}_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex $\overline{\mathbb{S}}$ with vertex set X s. t. $\mathbb{S}_a \subseteq \mathbb{S}_b$ for any $a \leq b$.
- More generally, filtration = nested family of spaces.

Example: Let (X, d_X) be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for $a \in \mathbf{R}$,

$$[x_0, x_1, \cdots, x_k] \in \text{Rips}(\mathbb{X}, a) \Leftrightarrow d_{\mathbb{X}}(x_i, x_j) \leq a, \text{ for all } i, j.$$

Filtrations of simplicial complexes

- A filtered simplicial complex (or a filtration) \mathbb{S} built on top of a set \mathbb{X} is a family $(\mathbb{S}_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex $\overline{\mathbb{S}}$ with vertex set X s. t. $\mathbb{S}_a \subseteq \mathbb{S}_b$ for any $a \leq b$.
- More generaly, filtration = nested family of spaces.

Many other examples and ways to design filtrations depending on the application and targeted objectives : sublevel and upperlevel sets, Čech complex,...

→ See practical session with GUDHI

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplicites and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplicites and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

Let
$$k = \dim \sigma_{a_i}$$
 (ie. $\sigma_{a_i} = [v_0, \dots, v_k]$)

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplicites and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

Let
$$k = \dim \sigma_{a_i}$$
 (ie. $\sigma_{a_i} = [v_0, \dots, v_k]$)

Case 1: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ creates a new k-dimensional topological feature in \mathbb{S}_{a_i} (new homology class in H_k).

 \Rightarrow the birth of a k-dim feature is registered.

Let $\mathbb{S} = (\mathbb{S}_a \mid a \in \mathbf{R})$ be a finite filtered simplicial complex with N simplicites and let $\mathbb{S}_{a_1} \subset \mathbb{S}_{a_2} \subset \cdots \subset \mathbb{S}_{a_N}$ be the discrete filtration induced by the entering times of the simplices: $\mathbb{S}_{a_i} \setminus \mathbb{S}_{a_{i-1}} = \sigma_{a_i}$.

Process the simplices according to their order of entrance in the filtration:

Let
$$k = \dim \sigma_{a_i}$$
 (ie. $\sigma_{a_i} = [v_0, \dots, v_k]$)

Case 1: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ creates a new k-dimensional topological feature in \mathbb{S}_{a_i} (new homology class in H_k).

Case 2: adding σ_{a_i} to $\mathbb{S}_{a_{i-1}}$ kills a (k-1)-dimensional topological feature in \mathbb{S}_{a_i} (homology class in H_{k-1}).

 \Rightarrow the birth of a k-dim feature is registered.

 \Rightarrow persistence algo. pairs the simplex σ_{a_i} to the simplex σ_{a_j} that gave birth to the killed feature.

Stability properties

"Stability theorem": Close spaces/data sets have close persistence diagrams!

[C., de Silva, Oudot - Geom. Dedicata 2013].

If X and Y are pre-compact metric spaces, then

 $d_{GH}(\mathbb{X}, \mathbb{Y}) := \inf_{\mathbb{Z}, \gamma_1, \gamma_2} d_H(\gamma_1(\mathbb{X}), \gamma_2(\mathbb{X}))$

 \mathbb{Z} metric space, $\gamma_1: \mathbb{X} \to \mathbb{Z}$ and $\gamma_2: \mathbb{Y} \to \mathbb{Z}$ isometric embeddings.

Rem: This result also holds for other families of filtrations (particular case of a more general thm).

Stability properties

"Stability theorem": Close spaces/data sets have close persistence diagrams!

[C., de Silva, Oudot - Geom. Dedicata 2013].

If X and Y are pre-compact metric spaces, then

Rem: This result also holds for other families of filtrations (particular case of a more general thm).

From a statistical perspective, when X is a random point cloud, such result links the study of statistical properties of persistence diagrams to support estimation problems.

Hausdorff distance

Let $A,B\subset M$ be two compact subsets of a metric space (M,d)

$$d_H(A,B) = \max_{b \in B} \{\sup_{a \in A} d(b,A), \sup_{a \in A} d(a,B)\}$$

where $d(b, A) = \sup_{a \in A} d(b, a)$.

Application: non rigid shape classification

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP '09]

- Non rigid shapes in a same class are almost isometric, but computing Gromov-Hausdorff distance between shapes is extremely expensive.
- Compare diagrams of sampled shapes instead of shapes themselves.

GUDHI:

- a C++/Python open source software library for TDA,
- a developers team, an editorial board, open to external contributions,
- provides state-of-the-art TDA data structures and algorithms : design of filtrations, computation of pre-defined filtrations, persistence diagrams,...
- part of GUDHI is interfaced to R through the TDA package.

Statistical properties and features extraction from persistence diagrams

Statistical setting and "linear representations"

X is now a random
point coud (in some
metric space)

Filt is a deterministic filtration (e.g. Rips)

 $D[\mathrm{Filt}(\mathbb{X})]$ becomes random

 ∞

Statistical setting and "linear representations"

What can be said about the distribution of diagrams D[Filt(X)]?

Statistical setting and "linear representations"

What can be said about the distribution of diagrams $D[\mathrm{Filt}(\mathbb{X})]$?

- ullet Stability properties \Rightarrow asymptotic properties, confidence bands, Wasserstein stability,...
- Other representation of persistence (landscapes, Betti curves, pers. images, kernels,...)

Statistical setting

 (\mathbb{M}, ρ) metric space

 μ a probability measure with compact support \mathbb{X}_{μ} .

Sample m points according to μ .

Examples:

-
$$\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_m)$$

-
$$\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{C}ech}_{\alpha}(\widehat{\mathbb{X}}_m)$$

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_{\mu}).$

Questions:

• Statistical properties of $dgm(Filt(\widehat{\mathbb{X}}_m))$? $dgm(Filt(\widehat{\mathbb{X}}_m)) \rightarrow ?$ as $m \rightarrow +\infty$?

Statistical setting

 $(\mathbb{M},
ho)$ metric space

 μ a probability measure with compact support \mathbb{X}_{μ} .

Sample m points according to μ .

Examples:

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_m)$

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{C}ech}_{\alpha}(\widehat{\mathbb{X}}_m)$

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_{\mu}).$

Questions:

- Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_m$)) ? dgm(Filt($\widehat{\mathbb{X}}_m$)) \to ? as $m \to +\infty$?
- Can we do more statistics with persistence diagrams? What can be said about distributions of diagrams?

Statistical setting

 (\mathbb{M}, ρ) metric space

 μ a probability measure with compact support \mathbb{X}_{μ} .

Sample m points according to μ .

Examples:

-
$$\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_m)$$

-
$$\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{C}ech}_{\alpha}(\widehat{\mathbb{X}}_m)$$

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_{\mu}).$

Stability thm: $d_b(\operatorname{dgm}(\operatorname{Filt}(\mathbb{X}_{\mu})), \operatorname{dgm}(\operatorname{Filt}(\widehat{\mathbb{X}}_m))) \leq 2d_{GH}(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_m)$

So, for any $\varepsilon > 0$,

$$\mathbb{P}\left(\mathrm{d_b}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_\mu)),\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_m))\right)>\varepsilon\right)\leq \mathbb{P}\left(d_{GH}(\mathbb{X}_\mu,\widehat{\mathbb{X}}_m)>\frac{\varepsilon}{2}\right)$$

Deviation inequality and rate of convergence

[C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

For a,b>0, μ satisfies the (a,b)-standard assumption if for any $x\in \mathbb{X}_{\mu}$ and any r>0, we have $\mu(B(x,r))\geq \min(ar^b,1)$.

Deviation inequality and rate of convergence

[C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

For a,b>0, μ satisfies the (a,b)-standard assumption if for any $x\in \mathbb{X}_{\mu}$ and any r>0, we have $\mu(B(x,r))\geq \min(ar^b,1)$.

Theorem: If μ satisfies the (a,b)-standard assumption, then for any $\varepsilon > 0$:

$$\mathbb{P}\left(\mathrm{d_b}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_\mu)),\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_m))\right)>\varepsilon\right)\leq \min(\frac{8^b}{a\varepsilon^b}\exp(-ma\varepsilon^b),1).$$

Deviation inequality and rate of convergence

[C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \geq \min(ar^b, 1)$.

Theorem: If μ satisfies the (a,b)-standard assumption, then for any $\varepsilon > 0$:

$$\mathbb{P}\left(\mathrm{d_b}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_\mu)),\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_m))\right)>\varepsilon\right)\leq \min(\frac{8^b}{a\varepsilon^b}\exp(-ma\varepsilon^b),1).$$

Corollary: Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of (a, b)-standard proba measures on \mathbb{M} . Then:

$$\sup_{\mu \in \mathcal{P}(a,b,\mathbb{M})} \mathbb{E}\left[\mathrm{d_b}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})),\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_m)))\right] \leq C\left(\frac{\ln m}{m}\right)^{1/b}$$

where the constant C only depends on a and b (not on M!). Moreover, the upper bound is tight (in a minimax sense)!

Persistence landscapes

$$\Lambda_p(t) = egin{cases} t-b & t \in [b, rac{b+d}{2}] \ d-t & t \in (rac{b+d}{2}, d] \ 0 & ext{otherwise.} \end{cases}$$

Persistence landscape [Bubenik 2012]:

$$\lambda_D(k,t) = \limsup_{p \in \mathsf{dgm}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

where kmax is the kth largest value in the set.

Many other ways to "linearize" persistence diagrams: intensity functions, image persistence, Betti curves, kernels,...

Persistence landscapes

Persistence landscape [Bubenik 2012]:

$$\lambda_D(k,t) = \limsup_{p \in \mathsf{dgm}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

Properties

- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $0 \le \lambda_D(k,t) \le \lambda_D(k+1,t)$.
- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $|\lambda_D(k,t) \lambda_{D'}(k,t)| \leq d_B(D,D')$ where $d_B(D,D')$ denotes the bottleneck distance between D and D'.

stability properties of persistence landscapes

Persistence landscapes

- Persistence encoded as an element of a functional space (vector space!).
- Expectation of distribution of landscapes is well-defined and can be approximated from average of sampled landscapes.
- ullet process point of view: convergence results and convergence rates o confidence intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]

To summarize

Wasserstein distance

Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probability measures on \mathbb{M} with finite p-moments $(p \ge 1)$.

"The" Wasserstein distance $W_p(\mu, \nu)$ quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $\rho(x,y)^p dx$.

- Transport plan: Π a proba measure on $M \times M$ such that $\Pi(A \times \mathbb{R}^d) = \mu(A)$ and $\Pi(\mathbb{R}^d \times B) = \nu(B)$ for any borelian sets $A, B \subset M$.
- Cost of a transport plan:

$$C(\Pi) = \left(\int_{M \times M} \rho(x, y)^p d\Pi(x, y) \right)^{\frac{1}{p}}$$

• $W_p(\mu, \nu) = \inf_{\Pi} C(\Pi)$

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be proba measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x,y)^p$.

Remarks:

- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distributions, not for expectations);
- Extended to point process setting y L. Decreusefond et al;
- $m^{\frac{1}{p}}$ cannot be replaced by a constant.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be proba measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x,y)^p$.

Consequences:

- Subsampling: efficient and easy to parallelize algorithm to infer topol. information from huge data sets.
- Robustness to outliers.
- R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be proba measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x,y)^p$.

Proof:

- 1. $W_p(\mu^{\otimes m}, \nu^{\otimes m}) \le m^{\frac{1}{p}} W_p(\mu, \nu)$
- 2. $W_p(P_\mu, P_\nu) \leq W_p(\mu^{\otimes m}, \nu^{\otimes m})$ (stability of persistence!)
- 3. $\|\Lambda_{\mu,m} \Lambda_{\nu,m}\|_{\infty} \leq W_p(P_{\mu}, P_{\nu})$ (Jensen's inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: Circle with one outlier.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

Persistence diagrams as discrete measures

Motivations:

- The space of measures is much nicer that the space of P. D. !
- In the "standard" algebraic persistence theory, persistence diagrams naturally appear as discrete measures in the plane (over rectangles).

 [Chazal, de Silva, Glisse, Oudot 16]
- Many persistence representations can be expressed as

$$D(\phi) = \sum_{\mathbf{r} \in D} \phi(\mathbf{r}) = \int \phi(\mathbf{r}) dD(\mathbf{r})$$

Representation of Persistence diagrams

A representation is called linear if there exists $\phi: \mathbb{R}^2 \to \mathcal{H}$ such that

$$\Phi(D) = \sum_{\mathbf{r} \in D} \phi(r) := D(\phi) = \int \phi(\mathbf{r}) \ dD(\mathbf{r})$$

Many existing representations among the literature:

Distrib. of life span, total persistence,...

Persistent silhouette [Chazal & al, 2013]

Persistent surface [Adams & al, 2016]

 Linear representations of persistence diagrams are well-suited to be learned from data. [e.g., Hofer et al, NIPS 2017]

Representation of Persistence diagrams

- ullet D is a random persistence diagram (coming from some phenomenon).
- ullet E[D] is a deterministic measure on $\mathbb{R}^2_>$ defined by

$$\forall A \subset \mathbb{R}^2$$
, $E[D](A) = E[D(A)]$.

ullet D_1,\ldots,D_N i.i.d. lacktriangle

$$\overline{\Phi} = \frac{\Phi(D_1) + \dots + \Phi(D_N)}{N}$$

$$= \overline{\mu}(\phi)$$

$$\approx E[D](\phi)$$

$$E[D](\phi) = \int_{\mathbb{R}^2} \phi(\mathbf{r}) p(\mathbf{r}) d\mathbf{r}$$

Under mild assumptions, E[D] has a density w.r.t. Lebesgue measure in \mathbb{R}^2

The density of expected persistence diagrams

[C. - Divol, 2018]

Theorem: Fix $n \ge 1$. Assume that:

- ullet M is a real analytic (compact) d-dimensional connected submanifold possibly with boundary,
- \mathbb{X} is a random variable on M^n having a density with respect to the Haussdorf measure \mathcal{H}_{dn} ,
- ullet $\mathcal K$ satisfies some (not very strong) assumptions.

Then, for $s \geq 0$, $E[D_s[\mathcal{K}(\mathbb{X})]]$ has a density with respect to the Lebesgue measure on the half plane $\mathbb{R}^2_> = \{(b,d) \in \mathbb{R}^2 : b \leq d\}$.

The density of expected persistence diagrams

[C. - Divol, 2018]

Theorem: Fix $n \ge 1$. Assume that:

- ullet M is a real analytic (compact) d-dimensional connected submanifold possibly with boundary,
- \mathbb{X} is a random variable on M^n having a density with respect to the Haussdorf measure \mathcal{H}_{dn} ,
- \bullet \mathcal{K} satisfies some (not very strong) assumptions.

Then, for $s \geq 0$, $E[D_s[\mathcal{K}(\mathbb{X})]]$ has a density with respect to the Lebesgue measure on the half plane $\mathbb{R}^2_> = \{(b,d) \in \mathbb{R}^2 : b \leq d\}$.

Theorem [smoothness]: Under the assumption of previous theorem, if moreover $\mathbb{X} \in M^n$ has a density of class C^k with respect to \mathcal{H}_{nd} . Then, for $s \geq 0$, the density of $E[D_s[\mathcal{K}(\mathbb{X})]]$ is of class C^k .

Persistence images

[Adams et al, JMLR 2017]

For $K: \mathbb{R}^2 \to \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(z) = |H|^{-1/2}K(H^{-1/2} \cdot u)$

For $D = \sum_i \delta_{\mathbf{r}_i}$ a diagram, $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \to \mathbb{R}_+$ a weight function, one defines the persistence surface of D with kernel K and weight function w by:

$$\forall z \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(\mathbf{r}_i) K_H(u - \mathbf{r}_i) = D(wK_H(u - \cdot))$$

Persistence images

[Adams et al, JMLR 2017]

For $K: \mathbb{R}^2 \to \mathbb{R}$ a kernel and H a bandwidth matrix (e.g. a symmetric positive definite matrix), pose for $u \in \mathbb{R}^2$, $K_H(z) = |H|^{-1/2}K(H^{-1/2} \cdot u)$

For $D = \sum_i \delta_{\mathbf{r}_i}$ a diagram, $K : \mathbb{R}^2 \to \mathbb{R}$ a kernel, H a bandwidth matrix and $w : \mathbb{R}^2 \to \mathbb{R}_+$ a weight function, one defines the persistence surface of D with kernel K and weight function w by:

$$\forall z \in \mathbb{R}^2, \ \rho(D)(u) = \sum_i w(\mathbf{r}_i) K_H(u - \mathbf{r}_i) = D(wK_H(u - \cdot))$$

 \Rightarrow persistence surfaces can be seen as kernel based estimators of $E[D_s[\mathcal{K}(\mathbb{X})]]$.

Persistence images

The realization of 3 different processes

The overlay of 40 different persistence diagrams

The persistence images with weight function $w(\mathbf{r}) = (r_2 - r_1)^3$ and bandwith selected using cross-validation.

TDA and Machine Learning: some examples and illustrations.

TDA and Machine Learning for time-dependent data

(Multivariate) time-dependent data can be converted into point clouds: sliding window, time-delay embedding,...

TDA and Machine Learning for time-dependent data

Representations of persistence (linearization):

Persistent silhouette

[Chazal & al, 2013]

ML/AI
Features extraction
Random forests
Deep learning
Etc...
(combined with other features)

With landscapes: patient monitoring

A joint industrial research project between

and

A French SME with innovating technology to reconstruct pedestrian trajectories from inertial sensors (ActiMyo)

Objective: precise analysis of movements and activities of pedestrians.

Targeted applications: personal healthcare; medical studies; defense.

With landscapes: patient monitoring

Example: Dyskinesia crisis detection and activity recognition:

Multi-channels CNN

Results on publicly available data set (HAPT) - improve the state-of-the-art.

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation/position).
- Reliable and robust information is mandatory.
- Events of interest are often rare and difficult to characterize.

With Betti curves: arrhythmia detection

Joint research project between Inria DataShape and Fujitsu

Objective: Arrythmia detection from ECG data.

TDA channel: Betti curves processed as 1D signal

- Improvement over state-of-the-art;
- Better generalization.

Thank you for your attention!

To get more details and more references:

- F. Chazal, B. Michel. An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists. https://arxiv.org/abs/1710.04019
- J.-D. Boissonnat, F. Chazal, M. Yvinec. Geometric and Topological Inference. Cambridge University Press, 2018.

Software:

- The Gudhi library (C++/Python): https://project.inria.fr/gudhi/software/
- R package TDA