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Introduction

Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with, possibly complex, topological/geometric structure.

[3D images (porous rocks)]

[Sensors]

[Force fields in granular media]
[Nano-materials - Li et al

2017]



What is Topological Data Analysis (TDA)?

A recent and very active research field with already many successful
applications

Modern data carry complex, but important, geometric/topological structure!

• Well-founded mathematical methods to infer and exploit relevant topological
and geometric features (feature engineering) from data for exploratory data
analysis, Machine Learning,...

• New and innovative tools for complex data to be used with or in complement
of other ML and AI tools.

• High quality, efficient and easy-to-use software for TDA tools.



The standard TDA pipeline

• Build a nested family of spaces (filtered simplicial
complex) on top of data→ multiscale topol. struc-
ture.

• Compute the persistent homology of the complex
→ multiscale topol. signature/features.

• Compare the signatures of “close” data sets → ro-
bustness and stability results.

• Statistical properties of signatures/features.
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The standard TDA pipeline

Persistence barcode

• Build a nested family of spaces (filtered simplicial
complex) on top of data→ multiscale topol. struc-
ture.

• Compute the persistent homology of the complex
→ multiscale topol. signature/features.

• Compare the signatures of “close” data sets → ro-
bustness and stability results.

• Statistical properties of signatures/features.

Persistence diagram



Persistent homology for functions
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Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function



Persistent homology for functions
z

M

a1σ1

a2σ2

a3

a4
σ3

Tracking and encoding the evolution of the connected components (0-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of ”independent” cycles (the Betti number).
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What if f is slightly perturbed?

Stability properties



X

R

∞

What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, dB(Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Comparing persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal

D1

D2

→ Persistence diagrams provide easy to compare topological signatures.



Some examples of applications

- Persistence-based clustering [C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

- Analysis of force fields in granular media [Kramar, Mischaikow et al ]



Some examples of applications

- Hand gesture recognition

- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]

[Li, Ovsjanikov, C. - CVPR’14]



• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.

Persistent homology for point cloud data
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• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.

Persistent homology for point cloud data

Persistence barcode

scale parameter

Persistence diagram



Simplicial complexes

Given a set P = {p0, . . . , pk} ⊂ Rd of k + 1 affinely independent points, the k-
dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex
combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...



Simplicial complexes

A (finite) simplicial complex K in Rd is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| ⊂ Rd is the union of the simplices of K.



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

Let {e1, · · · en} a basis of Rn. “The” geometric realization of K is the (geometric)
subcomplex |K| of the simplex spanned by e1, · · · en such that:

[ei0 · · · eik ] ∈ |K| iff {pi0 , · · · , pik} ∈ K

|K| is a topological space (subspace of an Euclidean space)!



Abstract simplicial complexes

Let P = {p1, · · · pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial
complexes, good for computations).



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.

Example: Let (X, dX) be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a ∈ R,

[x0, x1, · · · , xk] ∈ Rips(X, a)⇔ dX(xi, xj) ≤ a, for all i, j.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.

Many other examples and ways to design filtrations depending on the applica-
tion and targeted objectives : sublevel and upperlevel sets, Čech complex,...

→ See practical session with GUDHI



Persistent homology of filtered simplicial complexes

Let S = (Sa | a ∈ R) be a finite filtered simplicial complex with N simplicices and
let Sa1 ⊂ Sa2 ⊂ · · · ⊂ SaN be the discrete filtration induced by the entering times
of the simplices: Sai \ Sai−1 = σai .



Persistent homology of filtered simplicial complexes

Let S = (Sa | a ∈ R) be a finite filtered simplicial complex with N simplicices and
let Sa1 ⊂ Sa2 ⊂ · · · ⊂ SaN be the discrete filtration induced by the entering times
of the simplices: Sai \ Sai−1 = σai .

Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])
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Case 1: adding σai to Sai−1 creates a
new k-dimensional topological feature
in Sai (new homology class in Hk).

Sai−1

σai

⇒ the birth of a k-dim feature is registered.



Persistent homology of filtered simplicial complexes

Let S = (Sa | a ∈ R) be a finite filtered simplicial complex with N simplicices and
let Sa1 ⊂ Sa2 ⊂ · · · ⊂ SaN be the discrete filtration induced by the entering times
of the simplices: Sai \ Sai−1 = σai .

Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1: adding σai to Sai−1 creates a
new k-dimensional topological feature
in Sai (new homology class in Hk).

Sai−1

σai

⇒ the birth of a k-dim feature is registered.

Case 2: adding σai to Sai−1 kills a
(k− 1)-dimensional topological feature
in Sai (homology class in Hk−1).

Sai−1

σai

⇒ persistence algo. pairs the simplex σai
to the simplex σaj that gave birth to the
killed feature.



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.

From a statistical perspective, when X is a random point cloud, such result links the
study of statistical properties of persistence diagrams to support estimation problems.



Hausdorff distance

Let A,B ⊂M be two compact subsets of a metric space (M,d)

dH(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)}

where d(b, A) = supa∈A d(b, a).



Application: non rigid shape classification

camel
cat
elephant
face
head
horse

∞

0
0

1
∞

0
0

1
∞

0
0

1
∞

0
0

1

MDS using bottleneck distance.

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP ’09]

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.



Persistent homology with the GUDHI library

GUDHI :

• a C++/Python open source software library for TDA,

• a developers team, an editorial board, open to external contributions,

• provides state-of-the-art TDA data structures and algorithms : design
of filtrations, computation of pre-defined filtrations, persistence dia-
grams,...

• part of GUDHI is interfaced to R through the TDA package.

http://gudhi.gforge.inria.fr/

Ad
ver
tis
em
en
t f
or
the

pra
cti
cal

ses
sio
n!



Statistical properties and features extraction from
persistence diagrams



Statistical setting and “linear representations”
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Rips)

D[Filt(X)] becomes
random



Statistical setting and “linear representations”

∞

0
0

X Filt(X)

D[Filt(X)]

X is now a random
point coud (in some
metric space)

Filt is a determin-
istic filtration (e.g.
Rips)

D[Filt(X)] becomes
random

What can be said about the distribution of diagrams D[Filt(X)]?



Statistical setting and “linear representations”

∞

0
0

X Filt(X)

D[Filt(X)]

X is now a random
point coud (in some
metric space)

Filt is a determin-
istic filtration (e.g.
Rips)

D[Filt(X)] becomes
random

What can be said about the distribution of diagrams D[Filt(X)]?

• Stability properties⇒ asymptotic properties, confidence bands, Wasserstein
stability,...

• Other representation of persistence (landscapes, Betti curves, pers. images,
kernels,...)



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?

• Can we do more statistics with persistence diagrams? What can be said about
distributions of diagrams?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Stability thm: db(dgm(Filt(Xµ)), dgm(Filt(X̂m))) ≤ 2dGH(Xµ, X̂m)

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ P

(
dGH(Xµ, X̂m) >

ε

2

)So, for any ε > 0,



Deviation inequality and rate of convergence

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality and rate of convergence

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality and rate of convergence

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]

Corollary: Let P(a, b,M) be the set of (a, b)-standard proba measures on M. Then:

sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), dgm(Filt(X̂m)))

]
≤ C

(
lnm

m

)1/b

where the constant C only depends on a and b (not on M!). Moreover, the upper
bound is tight (in a minimax sense)!



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

D = {( di+bi
2

, di+bi
2

)}i ∈ I For p = ( b+d
2
, d−b

2
) ∈ D,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.
Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.

Many other ways to “linearize” persistence diagrams: intensity functions, image persis-
tence, Betti curves, kernels,...



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

Properties

• For any t ∈ R and any k ∈ N, 0 ≤ λD(k, t) ≤ λD(k + 1, t).

• For any t ∈ R and any k ∈ N, |λD(k, t) − λD′(k, t)| ≤ dB(D,D′) where
dB(D,D′) denotes the bottleneck distance between D and D′.

stability properties of persistence landscapes



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]



To summarize

X̂m Filt(X̂m)
(M, ρ, µ)

m points i.i.d.
sampled

according to µ.

Xµ compact

Repeat n times: λ1(t), · · · , λn(t) → λn(t) ΛP (t) = E[λi(t)]

λXµ(t)

|λn(t)− ΛP (t)|

Bootstrap

|λXP
(t)− ΛP (t)| →

0 as m
→∞

Stability w.r.t. µ?

m→∞

∞



Wasserstein distance
Let (M, ρ) be a metric space and let µ, ν be probability measures on M with finite
p-moments (p ≥ 1).

“The” Wasserstein distance Wp(µ, ν) quantifies the optimal cost of pushing µ onto
ν, the cost of moving a small mass dx from x to y being ρ(x, y)pdx.

• Transport plan: Π a proba measure on
M ×M such that Π(A × Rd) = µ(A)
and Π(Rd × B) = ν(B) for any borelian
sets A,B ⊂M .

• Cost of a transport plan:

C(Π) =

(∫
M×M

ρ(x, y)pdΠ(x, y)

) 1
p

• Wp(µ, ν) = infΠ C(Π)



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-
tions, not for expectations) ;
- Extended to point process setting y L. Decreusefond et al;

- m
1
p cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Consequences:
• Subsampling: efficient and easy to parallelize algorithm to infer topol. information

from huge data sets.

• Robustness to outliers.

• R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Proof:

1. Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

2. Wp(Pµ, Pν) ≤Wp(µ
⊗m, ν⊗m) (stability of persistence!)

3. ‖Λµ,m − Λν,m‖∞ ≤Wp(Pµ, Pν) (Jensen’s inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes
[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300



(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Persistence diagrams as discrete measures

D D :=
∑
r∈D

δr

• The space of measures is much nicer that the space of P. D. !

• In the “standard” algebraic persistence theory, persistence diagrams
naturally appear as discrete measures in the plane (over rectangles).

• Many persistence representations can be expressed as

D(φ) =
∑
r∈D

φ(r) =

∫
φ(r)dD(r)

for well-chosen functions φ.

Motivations:

[Chazal, de Silva, Glisse, Oudot 16]



Representation of Persistence diagrams

A representation is called linear if there exists φ : R2
> → H such that

Φ(D) =
∑
r∈D

φ(r) := D(φ) =

∫
φ(r) dD(r)

Persistent silhouette Persistent surface
[Chazal & al, 2013] [Adams & al, 2016]

Distrib. of life span, total
persistence,...

• Many existing representations among the literature:

· · ·

• Linear representations of persistence diagrams are well-suited to be
learned from data.

[e.g., Hofer et al, NIPS 2017]



Representation of Persistence diagrams

• D is a random persistence diagram (coming from some phenomenon).

• E[D] is a deterministic measure on R2
> defined by

∀A ⊂ R2
>, E[D](A) = E[D(A)].

• D1, . . . , DN i.i.d.

Φ =
Φ(D1) + · · ·+ Φ(DN)

N
= µ(φ)

≈ E[D](φ)

E[D](φ) =

∫
R2
>

φ(r)p(r)d r

Under mild assumptions, E[D] has a density w.r.t. Lebesgue measure in R2



The density of expected persistence diagrams

Theorem: Fix n ≥ 1. Assume that:

• M is a real analytic (compact) d-dimensional connected submanifold
possibly with boundary,

• X is a random variable on Mn having a density with respect to the
Haussdorf measure Hdn,

• K satisfies some (not very strong) assumptions.

Then, for s ≥ 0, E[Ds[K(X)]] has a density with respect to the Lebesgue
measure on the half plane R2

> = {(b, d) ∈ R2 : b ≤ d}.

[C. - Divol, 2018]



The density of expected persistence diagrams

Theorem: Fix n ≥ 1. Assume that:

• M is a real analytic (compact) d-dimensional connected submanifold
possibly with boundary,

• X is a random variable on Mn having a density with respect to the
Haussdorf measure Hdn,

• K satisfies some (not very strong) assumptions.

Then, for s ≥ 0, E[Ds[K(X)]] has a density with respect to the Lebesgue
measure on the half plane R2

> = {(b, d) ∈ R2 : b ≤ d}.

Theorem [smoothness]: Under the assumption of previous theorem, if more-
over X ∈Mn has a density of class Ck with respect to Hnd. Then, for s ≥ 0,
the density of E[Ds[K(X)]] is of class Ck.

[C. - Divol, 2018]



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑

i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and
w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑

i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and
w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))

⇒ persistence surfaces can be seen as kernel based estimators of E[Ds[K(X)]].



Persistence images

The realization of 3
different processes

The overlay of 40
different persistence

diagrams

The persistence images
with weight function
w(r) = (r2 − r1)3 and

bandwith selected using
cross-validation.



TDA and Machine Learning:
some examples and illustrations.



TDA and Machine Learning for time-dependent data

(Multivariate) time-dependent data can be converted into point clouds:
sliding window, time-delay embedding,...



TDA and Machine Learning for time-dependent data

TDA pipeline

Topol. signatures

Features extraction

Random forests

Deep learning

Etc...
(combined with other features)

GUDHI
software

ML/AI

Feature engineering

Representations of persistence (linearization):

Persistent silhouette
[Chazal & al, 2013]

Persistent surface
[Adams & al, 2016]



With landscapes: patient monitoring
A joint industrial research project between

Objective: precise analysis of movements and activities of pedestrians.

A French SME with innovating technology to
reconstruct pedestrian trajectories from

inertial sensors (ActiMyo)

“Chaotic” time-dependent data

Targeted applications: personal healthcare; medical studies; defense.

and



With landscapes: patient monitoring

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation/position).
- Reliable and robust information is mandatory.
- Events of interest are often rare and difficult to characterize.

Example: Dyskinesia crisis detection and activity recognition:

Results on publicly available
data set (HAPT) - improve the

state-of-the-art.
Multi-channels CNN TDA neural network+



With Betti curves: arrhythmia detection

Joint research project between Inria DataShape and Fujitsu

Objective: Arrythmia detection from ECG data.

TDA chan-
nel: Betti
curves
processed
as 1D signal

- Improvement over state-of-the-art;
- Better generalization.



Thank you for your attention!

• The Gudhi library (C++/Python): https://project.inria.fr/gudhi/software/

• R package TDA

Software:

To get more details and more references:

• F. Chazal, B. Michel. An introduction to Topological Data
Analysis: fundamental and practical aspects for data scientists.
https://arxiv.org/abs/1710.04019

• J.-D. Boissonnat, F. Chazal, M. Yvinec. Geometric and Topological Inference.
Cambridge University Press, 2018.
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