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Introduction
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Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with, possibly complex, topological /geometric structure.



What is Topological Data Analysis (TDA)?

Modern data carry complex, but important, geometric/topological structure!
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e Well-founded mathematical methods to infer and exploit relevant topological

and geometric features (feature engineering) from data for exploratory data
analysis, Machine Learning,...
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e New and innovative tools for complex data to be used with or in complement
of other ML and Al tools.

e High quality, efficient and easy-to-use software for TDA tools.

A recent and very active research field with already many successful
applications



The standard TDA pipeline
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Build a nested family of spaces (filtered simplicial
complex) on top of data — multiscale topol. struc-
ture.

Compute the persistent homology of the complex
— multiscale topol. signature/features.

Compare the signatures of “close” data sets — ro-
bustness and stability results.

Statistical properties of signatures/features.
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Build a nested family of spaces (filtered simplicial
complex) on top of data — multiscale topol. struc-
ture.
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— multiscale topol. signature/features.

Compare the signatures of “close” data sets — ro-
bustness and stability results.

Statistical properties of signatures/features.



The standard TDA pipeline
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Persistence barcode

i

., .

Build a nested family of spaces (filtered simplicial
complex) on top of data — multiscale topol. struc-
ture.

Compute the persistent homology of the complex

— multiscale topol. signature/features. Persistence diagram

>

Compare the signatures of “close” data sets — ro-
bustness and stability results.

Statistical properties of signatures/features.



Persistent homology for functions

0 ai d2d3

Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function



Persistent homology for functions

Tracking and encoding the evolution of the connected components (0O-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of "independent” cycles (the Betti number).



Stability properties

What if f is slightly perturbed?

<Y



Stability properties

What if f is slightly perturbed?

>
X

Theorem (Stability):
For any tame functions f,g: X = R, dg(Df,D,) < ||f — 9|lco-

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



Comparing persistence diagrams

x 11
\ ® D2
Add the diagonal

Multiplicity: 2

|
O birth

The bottleneck distance between two diagrams D and D5 is

dp(D1, D) = WirélfF Sup o — () ||oc
D 1

where I' is the set of all the bijections between D1 and D5 and ||p — ¢l =

max(|zp — Zql, [Yp — Yal)-

— Persistence diagrams provide easy to compare topological signatures.



Some examples of applications

- Persistence-based clustering [C. Guibas, Oudot,Skraba - J. ACM 2013]
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Some examples of applications

- Hand gesture recognition
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- Persistence-based pooling for shape recognition
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Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.
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Persistent homology for point cloud data

........

Persistence barcode

............
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® : 3 scale parameter

e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.

Persistence diagram

— -



Simplicial complexes

o
0-simplex: 1-simplex: 2-simplex: 3-simplex: etc
vertex edge triangle tetrahedron

Given a set P = {po,...,pr} C R® of k + 1 affinely independent points, the k-
dimensional simplex o, or k-simplex for short, spanned by P is the set of convex

combinations
k k
Z)\Z p;, with Z)\Z =1 and X; > 0.
i=0 i=0

The points pg, ..., pr are called the vertices of o.



Simplicial complexes

A (finite) simplicial complex K in R% is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| C R is the union of the simplices of K.



Abstract simplicial complexes

Let P = {p1,---pn} be a (finite) set. An
abstract simplicial complex K with vertex set

P is a set of subsets of P satisfying the two
conditions :

1. The elements of P belong to K.
2. f e K and 0 C 7, then 0 € K.

The elements of K are the simplices.

Let {e1,---en} a basis of R". “The" geometric realization of K is the (geometric)
subcomplex |K | of the simplex spanned by e, - - - e, such that:

[e’io ezk] S ’K‘ i {p’ioa“‘ apik} c K

| K| is a topological space (subspace of an Euclidean space)!



Abstract simplicial complexes

Let P = {p1,---pn} be a (finite) set. An
abstract simplicial complex K with vertex set
P is a set of subsets of P satisfying the two

conditions :

1. The elements of P belong to K.
2. f e K and 0 C 7, then 0 € K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial

complexes, good for computations).
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Filtrations of simplicial complexes

MRS

.......

-------------

e A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Se | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ €5y for any a < b.

e More generaly, filtration = nested family of spaces.



........

e A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Se | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ €5y for any a < b.

e More generaly, filtration = nested family of spaces.

Example: Let (X, dx) be a metric space.

e The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a € R,

xo,x1, - ,xk] € Rips(X,a) & dx(xi,x;) < a, foralli,y.
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Filtrations of simplicial complexes

MRS

,,,,,,,

..............

e A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Se | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ €5y for any a < b.

e More generaly, filtration = nested family of spaces.

Many other examples and ways to design filtrations depending on the applica-
tion and targeted objectives : sublevel and upperlevel sets, Cech complex,...

— See practical session with GUDHI



Persistent homology of filtered simplicial complexes

Let S = (S. | @ € R) be a finite filtered simplicial complex with N simplicices and
let Sq; C S, C -+ C Sqa, be the discrete filtration induced by the entering times
of the simplices: Sa, \ Sa, ; = 04, .



Persistent homology of filtered simplicial complexes

Let S = (S. | @ € R) be a finite filtered simplicial complex with N simplicices and
let Sq; C S, C -+ C Sqa, be the discrete filtration induced by the entering times
of the simplices: Sa, \ Sa, ; = 04, .

Process the simplices according to their order of entrance in the filtration:

Let k = dimo,, (ie. 0o, = [vo, - ,Vx])



Persistent homology of filtered simplicial complexes

Let S = (S. | @ € R) be a finite filtered simplicial complex with N simplicices and
let Sq; C S, C -+ C Sqa, be the discrete filtration induced by the entering times

of the simplices: Sq;, \ Sa,_; = 04,

Process the simplices according to their order of entrance in the filtration:

Let k = dimo,, (ie. 0o, = [vo, - ,Vx])

L

Case 1: adding o,, to S,, , creates a
new k-dimensional topological feature
in S,, (new homology class in Hy,).

Sa; 4
= the birth of a k-dim feature is registered.



Persistent homology of filtered simplicial complexes

Let S = (S. | @ € R) be a finite filtered simplicial complex with N simplicices and
let Sq; C S, C -+ C Sqa, be the discrete filtration induced by the entering times
of the simplices: Sa, \ Sa, ; = 04, .

Process the simplices according to their order of entrance in the filtration:

Let kK = dimo,, (ie. 04, = Vo, -, Vk])
Case 1: adding o,, to S,, , creates a Case 2: adding o, to S,,_, kills a
new k-dimensional topological feature (k — 1)-dimensional topological feature
in S,, (new homology class in Hy,). in S, (homology class in Hi_1).

S, = persistence algo. pairs the simplex o,
1—1

_ _ _ _ to the simplex o, that gave birth to the
= the birth of a k-dim feature is registered. | :/|.4 feature



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

ib(dgm(RipS(X)), dgm(Rips(Y))) < deu (X,Y).

Gromov-Hausdorff distance

dau(X,Y) := , ,iyfllfm dr (71(X), v2(X))

Z, metric space, v1 : X — Zand y2 : Y — Z
Isometric embeddings.

Bottleneck distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

ib(dgm(RipS(X)), dgm(Rips(Y))) < deu (X,Y).

Gromov-Hausdorff distance

dau(X,Y) := , ,iyfllfm dr (71(X), v2(X))

Z, metric space, v1 : X — Zand y2 : Y — Z
Isometric embeddings.

Bottleneck distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).

From a statistical perspective, when X is a random point cloud, such result links the
study of statistical properties of persistence diagrams to support estimation problems.



Hausdortf distance

AR

\

dau(A, B)

Let A, B C M be two compact subsets of a metric space (M, d)

d(A,B) = max{supd(b, A),supd(a,B)}
beB acA

where d(b, A) = sup,c 4 d(b,a).



Application: non rigid shape classification
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e Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

e Compare diagrams of sampled shapes instead of shapes themselves.



Persistent homology with the GUDHI Iibrary

G try Understandi
SJTEST GUDH |nelglgﬁer D|rr11’1eenrs?|($nns "9

I'\ http://gudhi.gforge.inria.fr/

GUDHI

e a C++4/Python open sofuce software library for TDA,

e a developers team;an editorial board, open to external contributions,

e provides state~of-the-art TDA data structures and algorithms : design

of filtrations, computation of pre-defined filtrations, persistence dia-
grams, ...

e part of GUDHI is interfaced to R through the TDA package.



Statistical properties and features extraction from
persistence diagrams



Statistical setting and “linear representations”

X is now a random Filt is a determin- D|Filt(X)]| becomes
point coud (in some istic filtration (e.g. random
metric space) Rips)

D[Filt(X)]




Statistical setting and “linear representations”

X is now a random Filt is a determin- D|Filt(X)] becomes
point coud (in some istic filtration (e.g. random
metric space) Rips)

D[Filt(X)]

What can be said about the distribution of diagrams D|Filt(X)]?



Statistical setting and “linear representations”

X is now a random Filt is a determin- D|Filt(X)]| becomes
point coud (in some istic filtration (e.g. random
metric space) Rips) ~

D[Filt(X)]

. Y —
° X o . !
] .:. O.-

0]

What can be said about the distribution of diagrams D|Filt(X)|?

e Stability properties = asymptotic properties, confidence bands, Wasserstein
stability,...

e Other representation of persistence (landscapes, Betti curves, pers. images,
kernels,...)



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
- Filt(Xm) = Rips, (Xim)
. - Filt(Xpm) = Cecha (X))
Sample m points -~
» P - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. e

AN

dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
_ Filt(Xom) = Rips,, (Xm)
Sample m points - Filt(Xm) = Cecha (Xim)
. - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. oo

AN

dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?

e Can we do more statistics with persistence diagrams? What can be said about
distributions of diagrams?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
_ Filt(Xom) = Rips,, (Xm)
Sample m points - Filt(Xm) = Cecha (Xim)
. - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. oo

AN

dgm(Filt(X

AN

Stability thm: dp,(dgm(Filt(X,)), dgm(Filt(X,))) < 2dan (X, Xom)

So, for any € > 0,

P (db (dgm(Filt(XM)),dgm(Filt(Xm))) > s) <P (daH(Xme) > %)



Deviation inequality and rate of convergence

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).



Deviation inequality and rate of convergence

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).

Theorem: If y satisfies the (a, b)-standard assumption, then for any € > 0:

P (db (dgm(Filt(Xu)), dgm(Filt(Xm))) > s) < min(j—; exp(—mae®), 1).



Deviation inequality and rate of convergence

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).

Theorem: If y satisfies the (a, b)-standard assumption, then for any € > 0:

P (db (dgm(Filt(Xu)), dgm(Filt(Xm))) > 8) < min(j—; exp(—mae®), 1).

Corollary: Let P(a, b, M) be the set of (a, b)-standard proba measures on M. Then:

P [db(dgm(Fﬂt(Xu)),dgm(Fﬂt(Xm)))} <C (m_m>1/ ’

neP (a,b,M) m

where the constant C only depends on a and b (not on M!). Moreover, the upper
bound is tight (in a minimax sense)!



Persistence landscapes

d+b d=b
, 2 A 2
Ad SR
®----- B
l e N
. />O<\  dtb
_ /b+d d—b
D:{(di;bijdi;‘bi)}iel Forp—( 5 3 o )ED'
t—>b tE[babLQd]
Ap(t) = qd—t te (X4, d]
0 otherwise.

Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), te€R,keN,

pEdgm
where kmax is the kth largest value in the set.

Many other ways to “linearize” persistence diagrams: intensity functions, image persis-
tence, Betti curves, kernels,...



Persistence landscapes

2
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Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), teR keN,

pedgm
Properties
e Foranyt € Randany k€N, 0 < Ap(k,t) < Ap(k+1,¢).
e Foranyt € R and any k € N, |Ap(k,t) — Ap/(k,t)| < dp(D,D") where

dg (D, D") denotes the bottleneck distWD and D’.

stability properties of persistence landscapes



Persistence landscapes

2
Ad SR
I‘ _______
®----- T
: P
- />O<\ , b

e Persistence encoded as an element of a functional space (vector space!).

e Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

e process point of view: convergence results and convergence rates — confidence
Intervals can be computed using bootstrap.



To summarize

—_— i .o .o /-'A

m points i.i.d. X °

sampled : .
according to ;. ©® e . /

Bootstrap
Repeat n times: A1 (¢ * E[X:(t)]
I>\ (t) — Ap(t)]

5 X

-

m — OO

Stability w.r.t. u?




VWasserstein distance

Let (M, p) be a metric space and let i, v be probability measures on M with finite
p-moments (p > 1).

“The" Wasserstein distance W, (i, ) quantifies the optimal cost of pushing u onto
v, the cost of moving a small mass dx from = to y being p(x,y)’dx.

Ci1/ N\------"""°° >
dl e Transport plan: II a proba measure on

. M x M such that II(A x R%) = u(A)
C; O o _?T_ijj and II(R* x B) = v(B) for any borelian
Q LY sets A, B C M.
d;

Q e PO : E e Cost of a transport plan:

O : _- _ﬁ o ;O C(II) = (/MxM px, y)" dll(z, y)) ’

o W,(u,v) = inf C(II)

K =



(Sub)sampling and stability of expected landscapes

. % ) .
—n P—
at X17X27°” 7Xm: ,Lb®m '..
I.i.d. sampled ° - P, = &, (u®™)
according to u. *
g Ay (t) = Ep, [A(H)

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-

tions, not for expectations) ;

- Extended to point process setting y L. Decreusefond et al;

1
- mP cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

. % '..
—_—  ° o« — i
t X17X27°” 7Xm: ,u®m ':
I.i.d. sampled * . . P, =@, (u®™)

ding to L.
according to u Apm(t) =Ep, [A(2)]

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Consequences:

e Subsampling: efficient and easy to parallelize algorithm to infer topol. information
from huge data sets.

e Robustness to outliers.

e R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/



(Sub)sampling and stability of expected landscapes

. % '..
—_—  ° o« — i
at X17X27°” 7Xm: ,u®m '..
I.i.d. sampled * . . P, =@, (u®™)

ding to L.
according to u Apm(t) =Ep, [A(2)]

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Proof:

1
L Wy (u®™, v®™) < m Wiy (u, v)

2. Wy(Py,P,) < Wy(u®™,v®™) (stability of persistence!)
3. ||Aum — Avmlloo < Wy(P,, P,) (Jensen’s inequality)



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

XN + (0,0) Diagrams Dy, and Dy, (dim 1) 1st Landscape (dim 1)
o _ <
— \ - N
N - landscape of Xy
o A o = |andscape of Yy
o ] 0 _ -
- "J:" o
S [ ES i = -
Lo
o - g - ”D" -
A DXN

o _ o _ v P o

| | | | r 7 | | | | < | | | |

-1.0 -0.5 0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0



(Sub)sampling and stability of expected landscapes

Example: 3D shapes

Average Landscapes Dissimilarity Matrix

+ a= « camel

flam. ele. camel

lion

| l J | J ' ' camel ele. flam. lion
0.00 0.10 0.20 0.30

‘\

From n = 100 subsamples of size m = 300




(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.
Walking Experiment with iPhone app

fred . i
© Dim 0, Mean 2nd Landscape with 95% band
_ o
o _| — fred
o] © fabri
a o | — bertrand
(Ty]
24\ .
| | | | | | | S
1000 1020 1040 1060 1080 1100 1120
o
N -
fabri o
. S 5 | | |
(Ty]
o 0.0 0.5 1.0 15
-
F. B - -
o ] Dim 1, Mean 1st Landscape with 95% band
S 4 | | | | | | [
I.'\.! ]
1000 1020 1040 1060 1080 1100 1120 e
2 _
P
betrand
2
o o
1 Ty
(Ty] [ T
0 | S _
e | | | T T | | o T | T |
1000 1020 1040 1060 1080 1100 1120 0.0 0.5 1.0 1.5

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!



Persistence diagrams as discrete measures

D D := Z5r
° /\/> reD

Motivations:

e [he space of measures is much nicer that the space of P. D. |

e In the “standard” algebraic persistence theory, persistence diagrams
naturally appear as discrete measures in the plane (over rectangles).

e Many persistence representations can be expressed as

D) =3 o(r) = / o(r)dD(r)

rcD



Representation of Persistence diagrams

A representation is called linear if there exists ¢ : R2 — H such that

3(D) =3 6(r) = D(¢) = / o(r) dD(r)

recD

e Many existing representations among the literature:

Persistence

Birth time

Distrib. of life span, total Persistent silhouette Persistent surface
persistence,...

e Linear representations of persistence diagrams are well-suited to be
learned from data.



Representation of Persistence diagrams

e D is a random persistence diagram (coming from some phenomenon).

e E[D] is a deterministic measure on RZ defined by

VA c R2, E[D](A) = E[D(A)).

® Dl, .. .,DN Ild

)
E[D|(¢) = / S(P)p(r)dr

Under mild assumptions, E[D] has a density w.r.t. Lebesgue measure in R?



The density of expected persistence diagrams

Theorem: Fix n > 1. Assume that:

e M is a real analytic (compact) d-dimensional connected submanifold
possibly with boundary,

e X is a random variable on M™ having a density with respect to the
Haussdorf measure H 4,

e /C satisfies some (not very strong) assumptions.

Then, for s > 0, E|Ds|K(X)]] has a density with respect to the Lebesgue
measure on the half plane RZ = {(b,d) € R? : b < d}.



The density of expected persistence diagrams

Theorem: Fix n > 1. Assume that:

e M is a real analytic (compact) d-dimensional connected submanifold
possibly with boundary,

e X is a random variable on M™ having a density with respect to the
Haussdorf measure H 4,

e /C satisfies some (not very strong) assumptions.

Then, for s > 0, E|Ds|K(X)]] has a density with respect to the Lebesgue
measure on the half plane RZ = {(b,d) € R? : b < d}.

Theorem [smoothness]: Under the assumption of previous theorem, if more-
over X € M™ has a density of class C* with respect to H.,4. Then, for s > 0,
the density of E[D,[K(X)]] is of class C*.



Persistence images

Persistence diagram
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~or K : R* — R a kernel and H a bandwidth matrix (e.g. a symmetric
hositive definite matrix), pose for u € R?, Ky (z) = |H|7Y2K(H~Y2 . )

For D =Y. 4, a diagram, K : R? — R a kernel, H a bandwidth matrix and

w : R? — R, a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

Vz € R?, p(D)(u) = Zw(ri)KH(u —t;) = D(wKg(u—-))



Persistence images

Persistence diagram
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~or K : R* — R a kernel and H a bandwidth matrix (e.g. a symmetric
hositive definite matrix), pose for u € R?, Ky (z) = |H|7Y2K(H~Y2 . )

For D =Y. 4, a diagram, K : R? — R a kernel, H a bandwidth matrix and

w : R? — R, a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

Vz € R?, p(D)(u) = Zw(ri)KH(u —t;) = D(wKg(u—-))

= persistence surfaces can be seen as kernel based estimators of F| D |K(X)]].



The realization of 3
different processes

The overlay of 40
different persistence
diagrams

The persistence images
with weight function
w(r) = (r2 —r1)° and
bandwith selected using
cross-validation.
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TDA and Machine Learning:
some examples and illustrations.



TDA and Machine Learning for time-dependent data

E & B ¥ 5 ., ® o
e

(Multivariate) time-dependent data can be converted into point clouds:
sliding window, time-delay embedding,...



TDA and Machine Learning for time-dependent data

Feature engineering

TDA pipeline

GUDHI
software

'

= [=a] [==]

/

. Persistence diagram

wq e

» Topol. signatures

0 2 4 & i 10
Birth

Representations of persistence (Iinearization):/

Persistent silhouette

Persistent surface

M L/AI
Features extraction
Random forests

Deep learning

Etc...

(combined with other features)




With landscapes: patient monitoring

A joint industrial research project between

Syshd and -

NAVIGATION TE CHNOLOGIES

informatics / mathematics

A French SME with innovating technology to aga/.

reconstruct pedestrian trajectories from
inertial sensors (ActiMyo)

“Chaotic” time-dependent data

Objective: precise analysis of movements and activities of pedestrians.

Targeted applications: personal healthcare; medical studies; defense.



Example: Dyskinesia crisis detection and activity recognition:

With landscapes: patient monitoring
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Naive
97.6
97.2
99.6
87.1
87.0
92.4
90.8
100.
87.1
81.4
74.2
80.4

Multi
98.4
99.8
99.7
93.1
97.7
100.
95.6
99.9
81.1
81.8
87.6
72.1

FEA
99.3
97.8
99.0
89.7
97.2
99.8
89.1
100.
84.2
85.9
86.5
83.2

QUA
99.0
98.0
98.4
91.8
97.2
99.9
91.3
100.
90.0
91.8
87.4
77.7

TDA
99.5
97.7
98.3
96.5
98.1
100.
93.4
100.
95.1
87.9
81.5
83.2

Results on publicly available

—I— TDA neural network

state-of-the-art.

- Events of interest are often rare and difficult to characterize.

SyS

nav

NAVIGATION TECHNOLOGIES

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation /position).
- Reliable and robust information is mandatory.

data set (HAPT) - improve the

informatics / mathematics




With Betti curves: arrhythmia detection

Joint research project between Inria DataShape and Fujitsu

Objective: Arrythmia detection from ECG data.

— Encoder - :
5 L J | ' n =
[=3 - >y
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[ Decoder ] Tt SRR, e T ' = .
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— Convolution Convolution o L) as 1D Sighna I
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1 I [ Global Average l l Global Average ] I I [ Global Average ] [ Global Average
&n | L -
E .
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o I y
=
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E [ Softmax ] <10

- Improvement over state-of-the-art;

o2, .,
FU] ITSU Zr/zoga’_. - Better generalization.



Thank you for your attention!

To get more details and more references:

e F. Chazal, B. Michel. An introduction to Topological Data
Analysis: fundamental and practical aspects for data scientists.
https://arxiv.org/abs/1710.04019

e J.-D. Boissonnat, F. Chazal, M. Yvinec. Geometric and Topological Inference.
Cambridge University Press, 2018.

Software:
e The Gudhi library (C++/Python): https://project.inria.fr/gudhi/software/

e R package TDA
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