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@ Databases
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Introduction to CA

Goals

To design mathematical methods and algorithms to model and

analyse the anatomy

@ Characterise anatomical shapes :
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Introduction to CA

Goals

To design mathematical methods and algorithms to model and
analyse the anatomy

@ Characterise anatomical shapes :
Estimate representative organs within groups (anatomical invariants)
@ Analysis of populations :
Establish “normal” variability
o Classification / Discrimination :
Classify pathologies from structural deviations
@ Learn the temporal evolution (growth, evolution of a disease) :
Model organ development across time
@ Segmentation, prediction, help therapy :
Build prior knowledge to simulate new anatomies, segment areas or
organs in new patient, predict from the shape of an organ the
evolution of a disease (through clinical variables for example)
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Introduction to CA

Mathematical tools

@ Characterise anatomical shapes : Geometry

@ Analysis of populations : Statistical Modelling and differential
geometry

o Classification / Discrimination : Statistical analysis

@ Learn the temporal evolution (growth, evolution of a disease) :
Statistical learning

@ Segmentation, prediction, help therapy : Functional analysis
o Etc...
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Introduction to CA

Kinds of data

@ Images (grey level, tensors, etc)
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Introduction to CA

Kinds of data

@ Anatomical landmarks : anatomical points, fibres, gyri, etc
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Introduction to CA

Kinds of data

@ Meshed surfaces (with point correspondence or not)
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Introduction to CA

Kinds of data

o Clinical variables related to the data (age, diagnosis, physiological

parameters, etc)

Stéphanie Allassonniere (Descartes)

Alzheimer Disease Assessment Scale—
Cognitive Subscale (ADAS-cog) 11-ltem

Score range

Memory and new learning
Word recall
(mean number of words not recalled)
Orientation
(one point for each incorrect response)
Word recognition
(mean number of incorrect responses)
Remembering test instructions

0-35
0-10

-
N

Language
Commands
Spoken language ability
Naming objects/fingers
Word-finding difficulty
Comprehension

Praxis
Constructional praxis
Ideational praxis

Total

Increasing scores indicate worsening cognitive function.
Rosen WG, et al. Am J Psychiatry. 1984;141:1356-1364.
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Introduction to CA

NEED : compare these elements in a mathematical way

— Computational anatomy is the correct setting

— Requires models of the data

Deformable Template Model (Genander, '80)
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Introduction to CA

The idea of Deformable Template Model

@ Compare two observations via the quantification of the deformation
from one to the other (D'Arcy Thompson, 1917)
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@ Each element of a population is a smooth deformation of a template
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Introduction to CA

The idea of Deformable Template Model

@ Compare two observations via the quantification of the deformation
from one to the other (D'Arcy Thompson, 1917)
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Registration / Variance

@ Each element of a population is a smooth deformation of a template

Template estimation / Mean
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QOutline

1. Introduction to Computational Anatomy

2. Registration technics

3. Statistical analysis of the deformations

4. Bayesian Modelling for template estimation

Stéphanie Allassonniére (Descartes) Computational Anatomy September 2018 12 / 82



Registration

Outline
1. Introduction to Computational Anatomy
2. Registration technics
@ The Registration issue
@ First approach : Rigid body transformations
@ Next step : Linear Models
@ The diffeomorphic setting
3. Statistical analysis of the deformations
4. Bayesian Modelling for template estimation
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Registration

The Registration issue

@ Deformable template mathematical model : Iy and /; two data :

h~¢ .1
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Registration

The Registration issue
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Registration

The Registration issue

@ Deformable template mathematical model : Iy and /; two data :

h>~¢.lo

@ How to quantify the difference between the two objects?
@ What kind of deformations?

@ How to apply the deformation to an object ?
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Registration

Object distances

Difference between two objects : (Same for the following solutions)

e Images : L? difference of the two functions

lh— 6. b3

@ Landmarks : Sum of the Euclidean distance between points :

Yo Ik = X3

1<i<N
@ Unlabeled landmark set, meshes, fibers : Requires to embed the
objects into a mathematical space where “addition, mean” and other

mathematical operations are stable (see Jean)!
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Rigid body or affine registration

@ Translation, rotation, scaling. Finite dimensional deformation but very
restrictive.
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Registration

Rigid body or affine registration

@ Translation, rotation, scaling. Finite dimensional deformation but very
restrictive.

o First improvement : ¢ = Affine transformation
@ Application of the deformation to :
Images: ¢ . Iy = lhyoop™t
— Image support is deformed, grey levels are transported
Landmarks : ¢ . (xi)i<i<n = (¢(xi))1<i<n
Others : see Jean!
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Registration

Rigid body registration
,/._.\\

\ 4

o Easy parametrisation of ¢ — Fast computations

s
L)
\ =4

@ Restricted deformations

:I‘V \'-

"
PRE-NATAL EXPOSED ™

No affine transformation to match these objects : Need for non linear

deformations
Stéphanie Allassonniere (Descartes) Computational Anatomy September 2018 16 / 82



Linearised deformations

@ Same difference between two objects
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Registration

Linearised deformations

@ Same difference between two objects

@ Idea : each pixel/voxel /point has its own movement
o=Id+v

where v € V space of smooth vector fields typically Reproducing
Kernel Hilbert Space (RKHS)
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Registration

Linearised deformations

@ Same difference between two objects

@ Idea : each pixel/voxel /point has its own movement
o=Id+v

where v € V space of smooth vector fields typically Reproducing
Kernel Hilbert Space (RKHS)

@ Application of the deformation to :
Images: ¢ . Iy = Ilp(ld—v)
— Image support is deformed by Id — v ~ ¢~ 1,
grey levels are transported

Landmarks : d) . (X,')lg,'g/\/ = (X;+V(X;))1§;§N
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Registration

Linearised deformations

@ ¢ only depends on v — Explicit parametrisation

@ Relevant for small deformations (where Id — v ~ ¢! is valid)

@ No invertibility guaranteed : overlaps may appear — some tissue may
disappear
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Linearised deformations

@ ¢ only depends on v — Explicit parametrisation

@ Relevant for small deformations (where Id — v ~ ¢! is valid)

@ No invertibility guaranteed : overlaps may appear — some tissue may
disappear

@ Need of a diffeomorphic condition on ¢
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LDDMM framework

Let Q € RY be an open set.
The framework defines

@ a class of objects O (eg : images | : Q@ — R, landmarks (xj)1<i<n,..-)
@ a class of diffeomorphic deformations ¢ : Q — Q, D

@ a specific group action
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LDDMM framework : The group of diffeomorphisms

@ At each time step the deformation is a “small deformation” :

¢t;+At,‘ = ld + Vt,'
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LDDMM framework : The group of diffeomorphisms

@ At each time step the deformation is a “small deformation” :

¢t;+At,‘ = ld + Vt,'

-

o Final deformation ¢1 = ¢, 0 ...0 ¢, 0 g (D At; =1)
i=1

@ ¢o = Id (no deformation to start with)
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LDDMM framework : The group of diffeomorphisms

@ At each time step the deformation is a “small deformation” :

¢t;+At,‘ = ld + Vt,'

-
o Final deformation ¢1 = ¢, 0 ... 0 ¢y 0 o (D At; = 1)
i=1
@ ¢o = Id (no deformation to start with)
@ When At — 0, ¢; solution of :
doy  _ v
The flow equation : { ¢‘{6f ; )/Ctloqﬁt
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LDDMM framework : The group of diffeomorphisms

If v €V, with V “admissible space”, then :

o Existence and uniqueness of the solution of the flow equation
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LDDMM framework : The group of diffeomorphisms

If v €V, with V “admissible space”, then :
o Existence and uniqueness of the solution of the flow equation

o Theset D= {¢¥, v € L?([0,1], V)} is a subgroup of
diffeomorphisms on Q

@ D is equipped with a right-invariant metric :

d(¢, ) = d(ld,1po 1)
o It defines a group action : ¢} . I =1', ¢{ € Dand I,I" € O
@ and a distance between two objects Oy and O; is computed via the

group action :

d(Og, O71) = inf d(ld. oY
(0o, 01) vtev,¢>l{n(oo):ol (Id, ¢7)
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LDDMM framework : The group of diffeomorphisms

e Existence, uniqueness and regularity (diffeomorphism) of the flow ¢V
guaranteed for (vt)c[o,1] such as

1
/ vel2dt < oo .
0

@ Then : d(Og, O1) = ev¢ivr}foo)—01{fol |‘Vt||%/dt}
%3 »P1 -
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LDDMM framework : The Matching problem

How to match one object onto another?

@ Group action = a way to apply the deformation and stay in O
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@ Group action = a way to apply the deformation and stay in O

+
@ A distance between diffeomorphic objects
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LDDMM framework : The Matching problem

How to match one object onto another?
@ Group action = a way to apply the deformation and stay in O
_|_
@ A distance between diffeomorphic objects

+
o A similarity term between objects
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e SRR

LDDMM framework : The Matching problem

How to match one object onto another?
@ Group action = a way to apply the deformation and stay in O
+
@ A distance between diffeomorphic objects : deformation cost

+
o A similarity term between objects : data attachment term

An energy to minimise :

1 [ 1 _
EW)=j [ Iulfdes 5z xhho@ P
————r v data attachment term

deformation cost tradeoff parameter
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LDDMM framework : From Hamiltonian to Shooting

The Hamiltonian formulation :

Let V be a RKHS which kernel Ky : (example for N landmarks)

e 3 (pi(t))1<i<n € R" such that v¢(x) = ﬁlleV(x,-(t),x)p,-(t)
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LDDMM framework : From Hamiltonian to Shooting

The Hamiltonian formulation :

Let V be a RKHS which kernel Ky : (example for N landmarks)
N
e I (pi(t))1<i<n € R" such that v(x) = > Ky(xi(t), x)pi(t)
i=1

o (pi(t))1<i<ny = momenta of the landmarks at time t
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LDDMM framework : From Hamiltonian to Shooting

The Hamiltonian formulation :

Let V be a RKHS which kernel Ky : (example for N landmarks)
N
e I (pi(t))1<i<n € R" such that v(x) = > Ky(xi(t), x)pi(t)
i=1

o (pi(t))1<i<ny = momenta of the landmarks at time t
o Let H(x,p) = %(p, K(x)p) = Hamiltonian
Then
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LDDMM framework : From Hamiltonian to Shooting

The Hamiltonian formulation :

Let V be a RKHS which kernel Ky : (example for N landmarks)
N
e 3 (pi(t))1<i<n € R" such that v¢(x) = Z Ky (xi(t), x)pi(t)

o (pi(t))i1<i<ny = momenta of the Iandmarks at time t
o Let H(x, p) = 3(p, K(x)p) = Hamiltonian

Then
O = Kx(Op(t) = H(x.p)
) — 1y o Ku(p(t),p(t) = —28(x,p)
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LDDMM framework : From Hamiltonian to Shooting

The Hamiltonian formulation :

Let V be a RKHS which kernel Ky : (example for N landmarks)
N
e 3 (pi(t))1<i<n € R" such that v¢(x) = Z Ky (xi(t), x)pi(t)

@ (pi(t))i<i<cny = momenta of the Iandmarks at time t

o Let H(x, p) = 3(p, K(x)p) = Hamiltonian

Then
O = Kx(Op(t) = H(x.p)
) — 1y o Ku(p(t),p(t) = —28(x,p)

@ Hamiltonian constant on the geodesics
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LDDMM framework : From Hamiltonian to Shooting

Consequences :

= Parametrisation of the problem by only xp (known) and pg
@ For images : the momentum supported by the gradient of the image

LVy versus agVIy

aln 1 Y md 2 e T T

PRI I Tl d € am T A1
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LDDMM framework : Example of deformations
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So now ?

Can do statistics on either the objects or the deformations!
For example :

@ Global shape analysis

@ Local deformation pattern detection
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Statistical analysis of the deformations
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Statistical analysis of the deformations

QOutline

—_

. Introduction to Computational Anatomy

N

. Registration technics

w

. Statistical analysis of the deformations

@ Noisy ICA general model
@ Gaussian Graphical Models

N~

. Bayesian Modelling for template estimation
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Statistical analysis of the deformations

Noisy ICA : Goal of the decomposition :

@ Data : one point cloud

@ Goal : explain these data

Stéphanie Allassonniére (Descartes)

##
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Statistical analysis of the deformations

Noisy ICA : Goal of the decomposition :

Mixture of two Gaussian distributions

@ Data : one point cloud

@ Goal : explain these data

Data point cloud

@ How : Extracting the “sources” which had generated the data

Stéphanie Allassonniere (Descartes)
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Statistical analysis of the deformations

Principal Component Analysis (PCA)

@ Orthogonal direction of maximum variance :
o Assumes a Gaussian distribution : X =y + X'/2¢, e ~ N(0, Id).

15 1: 15
Result from PCA (black lines) Resampling from the model
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Statistical analysis of the deformations

Independent Component Analysis (ICA)

@ Interpretation of the data (# Description)
@ Finds sources which may have generated the cloud

@ Accounts for non Gaussian distributions (more flexible model)

First estimated source
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Statistical analysis of the deformations

Independent Component Analysis (ICA)

@ Interpretation of the data (# Description)
@ Finds sources which may have generated the cloud

@ Accounts for non Gaussian distributions (more flexible model)

*
i
15 t,
ol
10 5
s *
e,
of » St R
¥ v 3288
5 a
A
10 b
k
15 ,‘%
b
20
.
25
20 10 0 10 20

First estimated source
Second estimated source
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Statistical analysis of the deformations

Independent Component Analysis (ICA)

@ Interpretation of the data (# Description)
@ Finds sources which may have generated the cloud

@ Accounts for non Gaussian distributions (more flexible model)

First estimated source
Second estimated source
Resampling form the model
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Statistical analysis of the deformations

Difference between PCA and ICA

| PCA

ICA |

Maximum variance axes

Source separation

Geometrical (orthogonal axis)

Statistical (source points in the plane)

Description of data

Explanation and interpretation

Gaussian distribution
only

Many other possible distributions
e.g. mixtures, continuous or discrete

(see later)
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Statistical analysis of the deformations ICA model

General hierarchical model :

* Observations : X" in (R9)"

* Source matrix : A called decomposition matrix
* Gaussian noise : o¢;

* Independent components : 3; € RP, p << d
— random vector with independent coordinates

Xi = AB; + o¢i
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Statistical analysis of the deformations ICA model

General hierarchical model :

* Observations : X{" in (R9)"

* Source matrix : A called decomposition matrix
* Gaussian noise : o¢;

* Independent components : 3; € RP, p << d
— random vector with independent coordinates

X,' = AIG’ + o¢;
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Statistical analysis of the deformations ICA model

General hierarchical model :

* Observations : X{" in (R9)"

* Source matrix : A called decomposition matrix
* Gaussian noise : o¢;

* Independent components : 3; € RP, p << d
— random vector with independent coordinates

X,' = Aﬁl + o¢;
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Statistical analysis of the deformations ICA model

General hierarchical model :

* Observations : X{" in (R9)"

* Source matrix : A called decomposition matrix

* Gaussian noise : o¢;

* Independent components : 3; € RP, p << d

— random vector with independent coordinates
371 hidden variables.

X,' = Aﬁl + o¢;
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Statistical analysis of the deformations ICA model

General hierarchical model :

* Observations : X{" in (R9)"

* Source matrix : A called decomposition matrix

* Gaussian noise : o¢;

* Independent components : 3; € RP, p << d

— random vector with independent coordinates
371 hidden variables.

X,' = Aﬁl + o¢;

@ Model : for all images X;, 1 <i<n
/Bi.j ~ Vr/‘naV]-SJ.Sp
Xf ~ N(Aﬁi,(72ld) | A7 027 IBi-

@ Various choices of the distribution 1/, on the independent
components
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Statistical analysis of the deformations ICA model

Various examples of distributions :

Independent Factor analysis
ﬂi,j ~ vy |n,V1<j<p
Xi ~ N(Aﬁi7a2ld) ’ A7 027 IBi

@ For identifiability, 7/, cannot be Gaussian

@ v, is a mixture of K 1D Gaussian distributions
N(mk, ].), k=1,.., K with weights (Wk)lgkgK-

° 1 = (M, wk)1<k<k

o 0= (A, o2, (mg, wi)1<k<k)
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Statistical analysis of the deformations ICA model

Various examples of distributions :

Continuous distributions

Bi,j ~ V’r/‘777V1§j§p
Xi ~ N(ABj,0ld) | A o2 B

@ v, is either :
o Logistic Log(1/2),
e Laplacian, R
o Exponentially scaled Gaussian(EG) : 5/ = s/ Y7 where
Y ~N(p,Id) and pp = (..., pn); st,...,s’ are independent Exp(1),
also independent from Y (sub-exponential tail)

en==0orpu

o 0= (Ac?)orfd=(A 0% u)

Computational Anatomy September 2018 34 /82
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Statistical analysis of the deformations ICA model

Various examples of distributions :

Discrete distributions
Bi,j ~ V’r/‘777V1§j§p
Xi  ~ N(AB;,0%ld) | A o2, B;

Idea : Introduce a switch to cancel some of the decomposition vectors

— Either binary ("on/off") or ternary (activate, inhibit, remove)
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Statistical analysis of the deformations ICA model

Various examples of distributions :

Discrete distributions
Bi,j ~ V’r/‘777V1§.j§p
Xi  ~ N(AB;,0%ld) | A o2, B;

Idea : Introduce a switch to cancel some of the decomposition vectors
— Either binary ("on/off") or ternary (activate, inhibit, remove)

o Bernoulli-censored Gaussian (BG) : 3/ = b/ Y/ with b/ ~ B(a), Y is
a Gaussian vector with distribution A/ (u, Id).

o Exponentially scaled Bernoulli-censored Gaussian (EBG) : mix of
EG and BG

o Exponentially-scaled ternary distribution (ET) : 3/ = s/ Y/, where
st,...,sPareiid. Exp(l). v = P(Y/ = —1) = P(Y/ = 1), providing a
symmetric distribution for the components of Y.

0 0= (A% ua,7)
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Statistical analysis of the deformations Estimation

ML Estimator :

@ Parameters 6 are estimated by maximum likelihood :

0 = argmax P(X;0)

@ 37 unobserved random variables + Maximise a likelihood
— EM algorithm (Expectation - Maximisation)
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Statistical analysis of the deformations Estimation

ML Estimator :

@ Parameters 6 are estimated by maximum likelihood :

0 = argmax P(X;0)

@ 37 unobserved random variables + Maximise a likelihood
— EM algorithm (Expectation - Maximisation)

Iteration k of the algorithm :
E Step : Compute the posterior distribution of 3; given X; and 6, :

vik(dB;)
M Step : Parameter update :
Ok1 = argmax By, [log q(B7, X{: 0)]] .
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Statistical analysis of the deformations Estimation

ML Estimator :

@ Parameters 6 are estimated by maximum likelihood :

0 = argmax P(X;0)

@ 37 unobserved random variables + Maximise a likelihood
— EM algorithm (Expectation - Maximisation)

Iteration k of the algorithm :
E Step : Compute the posterior distribution of 3; given X; and 6, :

vik(dB;)
M Step : Parameter update :

Ok+1 = arg m;iXEuf‘k [log q(B7, X{: 0)]] .

BUT : E step not computationally tractable!
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Statistical analysis of the deformations Estimation

Others :

FastICA :

@ Employs a fixed point algorithm to minimise the mutual information
between the coordinates of A71X

Particle filtering within EM :

@ Approximates the posterior distribution using particle filtering
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Statistical analysis of the deformations Experiments

Experiments

Two source images
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Statistical analysis of the deformations

Experiments

Experiments

Two source images

EENANEAEEE
Y G G R N R
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RN E SRR

Samples of the four training sets different level of noise. From left to right and
top to bottom : 0 = 0.1, 0.5, 0.8, 1.5
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Statistical analysis of the deformations Experiments

Results of the PCA decomposition

90| 1300 3000 8000

10 100 o 100 10

Cumulative eigen values of the PCA decomposition

Two first Principal Components (orthogonal images).
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Statistical analysis of the deformations Experiments

Comparison : 30 images per training set
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Statistical analysis of the deformations Experiments

Comparison : 50 images per training set
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FAM-EM/Log

SAEM/Log
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FastICA
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Statistical analysis of the deformations Experiments

Comparison : 100 images per training set

Model/Algo oc=0.1 oc=0.5 c=038 oc=15
FAM-EM/Log ! u E u E m H E
senee Il
seen o I Il I
EM/IFA ! u ! u ! u E !
sence R I S S
FastICA ! u . E . . . .
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Statistical analysis of the deformations Real databases

Patches of faces from Caltech101 database
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100 random images picked from the 10,000 images used as the training set.
These images are patches extracted from the face images of the Caltech101 data
base. Each image is a grey level image of size 13 x 13.
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Real databases

Statistical analysis of the deformations

Patches of faces from Caltech101 database
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100 decomposition vectors from 2 models. Left : Log-ICA. Right : BG-ICA.
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Statistical analysis of the deformations Real databases

101 hippocampus deformations (3 populations : Ctrl - Mild AD - AD)

Mean and five decomposition vectors estimated with L-ICA (left) and ET-ICA
(right). Each image has its own colorbar to highlight the major patterns.
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Statistical analysis of the deformations Real databases

101 hippocampus deformations (3 populations : Ctrl - Mild AD - AD)

Ctrl/AD Ctrl/mild AD

Model L-ICA [ BGICA L-ICA | BG-ICA
Mean [[ 0.31 x1073 [ 0.33 x1073 ][ 9.0 x1073 | 1.09 x102
Std dev. || 0.16 x1073 [ 0.25 x1073 || 3.8 x1073 | 4.6 7.6 x103

TABLE — Mean and standard deviation of the p-values for the two models with
the decomposition vectors. Means and standard deviations are computed over 50
runs to separate the Controls from the AD group (left columns) and to separate
the Controls from the mild AD group (right columns). PCA p-values : 0.3 x 1073
and 7.7 x 1073 using 95% of the cumulative variance.
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Statistical analysis of the deformations Real databases

What more can we look for?

@ Relations between regions of the brain or an anatomical structure
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Statistical analysis of the deformations Real databases

What more can we look for?

@ Relations between regions of the brain or an anatomical structure
@ Such as : correlation patterns

@ Example : computation of the correlation matrix using a PCA
decomposition
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Statistical analysis of the deformations Real databases

What more can we look for?

@ Relations between regions of the brain or an anatomical structure

@ Such as : correlation patterns

@ Example : computation of the correlation matrix using a PCA
decomposition

o Then highlight the most important by thresholding
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Statistical analysis of the deformations Real databases

What more can we look for?

@ Relations between regions of the brain or an anatomical structure

@ Such as : correlation patterns

o Example : computation of the correlation matrix using a PCA
decomposition

o Then highlight the most important by thresholding

However :
@ Correlations describe the global statistical dependencies between

variables
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Statistical analysis of the deformations Real databases

What more can we look for?

@ Relations between regions of the brain or an anatomical structure

@ Such as : correlation patterns

o Example : computation of the correlation matrix using a PCA
decomposition

o Then highlight the most important by thresholding

However :
@ Correlations describe the global statistical dependencies between
variables
= both direct and indirect interactions
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Statistical analysis of the deformations Real databases

Correlation vs Conditional Correlation

@ Under Gaussian assumption
“ @ Traffic jam intensity correlated
_':I"\'E'\"“T'J.. u to Number of snowmen in town
St
ﬁ:;ﬁ:_‘? due to snowstorm.
G
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Statistical analysis of the deformations Real databases

Correlation vs Conditional Correlation

@ Under Gaussian assumption
“ @ Traffic jam intensity correlated
ondih to Number of snowmen in town
il
e due to snowstorm.
u;;\}u}
i

@ But conditionally on Snow,

Number of snowmen is
; independent of Traffic jams
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Statistical analysis of the deformations Real databases

Correlation vs Conditional Correlation

@ Under Gaussian assumption

“ @ Traffic jam intensity correlated
:E“'IH'Q‘% u to Number of snowmen in town
v\\\“
é,‘*,ﬁ:_‘? due to snowstorm.
Hl-ih"ru}

@ But conditionally on Snow,
Number of snowmen is
; independent of Traffic jams
. “‘!1 < No edge between Traffic jam
; @ﬂ and Snowmen random variables
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Statistical analysis of the deformations Real databases

Why do we need sparsity ?

@ Only few of these direct interaction are important

Stéphanie Allassonniere (Descartes) Computational Anatomy September 2018 48 / 82



Statistical analysis of the deformations Real databases

Why do we need sparsity ?

@ Only few of these direct interaction are important

@ No post processing

Stéphanie Allassonniere (Descartes) Computational Anatomy September 2018 48 / 82



Statistical analysis of the deformations Real databases

Why do we need sparsity ?

@ Only few of these direct interaction are important
@ No post processing

@ Introduce sparsity into the modelling
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Statistical analysis of the deformations Real databases

Why do we need sparsity ?

Only few of these direct interaction are important

No post processing

Introduce sparsity into the modelling

+ high-dimension-low-sample-size paradigm
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Statistical analysis of the deformations Real databases

Why do we need sparsity ?

Only few of these direct interaction are important

No post processing

Introduce sparsity into the modelling

+ high-dimension-low-sample-size paradigm

Although the underlying real graph is not sparse, perform a sparse
estimation of its structure
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Statistical analysis of the deformations Real databases

Why do we need sparsity ?

Only few of these direct interaction are important

No post processing

Introduce sparsity into the modelling

+ high-dimension-low-sample-size paradigm

Although the underlying real graph is not sparse, perform a sparse
estimation of its structure

Significant edges only appear and estimation more stable
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Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider

@ p points on a given shape = nodes of the graph
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Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider
@ p points on a given shape = nodes of the graph
@ On these points, we observe n random responses

@ The p nodes of the graph are thus identified to p random variables
denoted X = (Xi, ..., Xp)
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Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider
@ p points on a given shape = nodes of the graph
@ On these points, we observe n random responses

@ The p nodes of the graph are thus identified to p random variables
denoted X = (Xi, ..., Xp)

e X assumed to be distributed as a multivariate Gaussian N,(0, )
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Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider
@ p points on a given shape = nodes of the graph
@ On these points, we observe n random responses

@ The p nodes of the graph are thus identified to p random variables
denoted X = (Xi, ..., Xp)

@ X assumed to be distributed as a multivariate Gaussian N, (0, )

The graph Gy of conditional dependencies is defined as follows :
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Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider
@ p points on a given shape = nodes of the graph
@ On these points, we observe n random responses

@ The p nodes of the graph are thus identified to p random variables
denoted X = (Xi, ..., Xp)

X assumed to be distributed as a multivariate Gaussian N, (0, X)

The graph Gy of conditional dependencies is defined as follows :

@ There exists an edge between nodes a and b if and only if the
variables X, and X}, are dependent given all the remaining
variables
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Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider
@ p points on a given shape = nodes of the graph
@ On these points, we observe n random responses

@ The p nodes of the graph are thus identified to p random variables
denoted X = (Xi, ..., Xp)

X assumed to be distributed as a multivariate Gaussian N, (0, X)

The graph Gy of conditional dependencies is defined as follows :

@ There exists an edge between nodes a and b if and only if the
variables X, and X}, are dependent given all the remaining
variables

e Conditional correlations given by non-zero entries of ¥ 1
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Introducing a neighbourhood prior

Introducing a neighbourhood prior

@ The neighbouring points of the graph are very likely to be
conditionally correlated.
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Introducing a neighbourhood prior

Introducing a neighbourhood prior
@ The neighbouring points of the graph are very likely to be

conditionally correlated.
@ Information known a priori — Into the statistical model
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Introducing a neighbourhood prior

Introducing a neighbourhood prior

@ The neighbouring points of the graph are very likely to be
conditionally correlated.

@ Information known a priori — Into the statistical model

@ New data : Neighbouring graph Gp
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Introducing a neighbourhood prior

Introducing a neighbourhood prior

@ The neighbouring points of the graph are very likely to be
conditionally correlated.

@ Information known a priori — Into the statistical model
@ New data : Neighbouring graph Gp
@ There are correlations between these points
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Introducing a neighbourhood prior

Introducing a neighbourhood prior

@ The neighbouring points of the graph are very likely to be
conditionally correlated.

Information known a priori — Into the statistical model

New data : Neighbouring graph G

There are correlations between these points

But we are not estimating them rather looking for the other ones
= Long distance conditional correlations
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Introducing a neighbourhood prior

Introducing a neighbourhood prior

@ The neighbouring points of the graph are very likely to be
conditionally correlated.

Information known a priori — Into the statistical model

New data : Neighbouring graph G

There are correlations between these points

But we are not estimating them rather looking for the other ones
= Long distance conditional correlations

@ Our idea : Do the estimation in the orthogonal space of Gy

Xa = Xony(XT X)X Xa (1)
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Introducing a neighbourhood prior

Introducing a neighbourhood prior

The neighbouring points of the graph are very likely to be
conditionally correlated.

Information known a priori — Into the statistical model

New data : Neighbouring graph G

There are correlations between these points

But we are not estimating them rather looking for the other ones
= Long distance conditional correlations

Our idea : Do the estimation in the orthogonal space of Gy

Xa = Xony(XT X)X Xa (1)

May be too strong constrain (numerically un-invertible) — alleviate
through :

Xa = Xy (X Ximy + 701d) 72X X (2)
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Experiments

No prior

< W

‘xs,\l w “ ‘\

Controls Mild AD Late AD

F1GURE — Examples of the training set. The colour depends on the intensity of
the Jacobian of the deformation. Blue means a contraction and red dilatation.
The intensity itself is not important but rather its relative value with respect to
the others.
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No prior

Lasso + Or Lasso + And Enet + Or Enet + And
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With prior

FIGURE — Two examples of neighbourhood graphs we used. Left :
3nearest-neighbour graph. Right : neighbours have Euclidean distance below a
given threshold.

Note : User's choice : you can add connection that you know.
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LASSO LASSO LASSO |ASSO Enet Enet
Orth Orth Ridge  Ridge  Orth Orth
Or And Or And Or And
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Clustering of the Shape : using spectral clustering

—nadatal. =1o.=
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Population comparison

Without prior

Controls

AD patients
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Statistical Questions

Outline

1. Introduction to Computational Anatomy
2. Registration technics
3. Statistical analysis of the deformations

4. Bayesian Modelling for template estimation
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Statistical Questions

QOutline

1. Introduction to Computational Anatomy

2. Registration technics

3. Statistical analysis of the deformations

4. Bayesian Modelling for template estimation
Mathematical framework for deformable models
Past approaches to compute a population average
Generative statistical models

Statistical estimation of the model parameters

Experiments
And next?
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Statistical Questions

What are the mean and the variability

@ Matching depends on the template Iy
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Statistical Questions

What are the mean and the variability

@ Matching depends on the template Iy

4
<

@ What is a good template ?

7
y

@ One of them?

%
7
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Statistical Questions

What are the mean and the variability

@ Matching depends on the template Iy

4
<

@ What is a good template ?

7
y

@ One of them?

@ Which one and why this one?
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Statistical Questions

What are the mean and the variability

Other question (related)

o Let (Oi)1<i<n be a homogeneous population (control or AD, or
autistic, etc)
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Statistical Questions

What are the mean and the variability

Other question (related)

o Let (Oi)1<i<n be a homogeneous population (control or AD, or
autistic, etc)

@ Problem : O; lives in a manifold
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Statistical Questions

What are the mean and the variability

Other question (related)
o Let (Oi)1<i<n be a homogeneous population (control or AD, or
autistic, etc)
@ Problem : O; lives in a manifold
@ Question : how to compute a mean ? And population normal
variability ?
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Statistical Questions

BME Template model

@ Population of n grey level images y;'
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Statistical Questions

BME Template model

@ Population of n grey level images y;'
@ Observation model :
e Each observation y belongs to an unknown component ¢t
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Statistical Questions

BME Template model

@ Population of n grey level images y;'
@ Observation model :

e Each observation y belongs to an unknown component ¢t
e Conditional on the image membership to component t,
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Statistical Questions

BME Template model

@ Population of n grey level images y;'
@ Observation model :

e Each observation y belongs to an unknown component ¢t
e Conditional on the image membership to component t,
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Statistical Questions

BME Template model

@ Population of n grey level images y;'
@ Observation model :

e Each observation y belongs to an unknown component ¢t
e Conditional on the image membership to component t,

e 3z: R®— R an unobserved deformation field
o a continuously defined template /; : R® — R
o a Gaussian centred white noise ¢ of variance o2

such that
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Statistical Questions

BME Template model

@ Template and deformation model :
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Statistical Questions

BME Template model

@ Template and deformation model :

o It € V, RKHS with kernel K,
o Spline model : Given (px)1<k<k,, 3 a¢ € R such that :

) = Kpore(2), = 32 Ky, oK)
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Statistical Questions

BME Template model

@ Template and deformation model :

o It € V, RKHS with kernel K,
o Spline model : Given (px)1<k<k,, 3 a¢ € R such that :

kp
() = Kpoe(x). = 3 Kp(ox. p)ae(k)

Same spline model for the deformation :
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Statistical Questions

BME Template model

@ Template and deformation model :

o It € V, RKHS with kernel K,
o Spline model : Given (px)1<k<k,, 3 a¢ € R such that :

kp
() = Kpoe(x). = 3 Kp(ox. p)ae(k)

Same spline model for the deformation :
o z € V,; RKHS with kernel K,
o Given (gk)1<k<k, 3 (BM), 8?) € R% x R% such that :

ke
() = (Kef) () = 22 K (x, 8) (8D (k). B2 (k).
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Statistical Questions

BME Template model

@ Hierarchical generative model :
(
P~ Vp,
0 = (ar,07,T%) ~ @y (vp @ vg)
O, 01y 1 g )1<e<T t=1Wp ¥ Vg
T
T~ @iy letét | p
t=—

BT~ @ N0, T 1

i~ @y N (25 o, 07 d) | BT, 7]
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Statistical Questions

BME Template model

@ Hierarchical generative model :

()~ v, weights prior
0 = (ar, 08, T) ~ @1 (vp ® 1)
Qt, Oty | g JI<t<T t=1\"p g

.
T~ Qi let5t | p
=

BT~ @ N0, T 1

i~ @y N (25 o, 07 d) | BT, 7]
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Statistical Questions

BME Template model

@ Hierarchical generative model :

.
P~ Vp,

_ 2 rt T arameters priors
0 = (e, 08, TphicesT ~ @1 (vp @ vg) P P

.
T~ Qi Elpt5t | p
=

BT~ @ N0, T 1

i~ @y N (25 o, 07 d) | BT, 7]
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Statistical Questions

BME Template model

@ Hierarchical generative model :
(
p~ Vp,
0 = (ar, 08, T h<e<T ~ @1 (vp ® vg)
T
T~ Q@7 > pede | p pick labels for images
t=1

BT~ @ N0, T 1

i~ @y N (25 o, 07 d) | BT, 7]
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Statistical Questions

BME Template model

@ Hierarchical generative model :

)
P~ Vp,
0 = (ar, 07, TE)1<e<T ~ @1 (vp © vg)
T
T~ Qi Elpt5t | p
t=

By ~ @ N(0,TF)] 7 draw ) deformations
from 7]

}/],.7 ~ ®7:1N(ZBI Ia‘rl- Y 0-3,' ld/\) | ﬁf? Tf
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Statistical Questions

BME Template model

@ Hierarchical generative model :
(
P~ Vp,
0 = (ar,07,T%) ~ @y (vp @ vg)
O, 01y 1 g )1<e<T t=1Wp ¥ Vg
T
T~ @iy Z:Iptét | p
t=—

BT~ @ N0, T 1

"~ @7 N(zg s, , 02 1d, non _
" =N (23, Yri? T AL T draw images from /7

and 6,
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Statistical Questions

BME Template model

@ Hierarchical generative model :
(
P~ Vp,
0 = (ar,07,T%) ~ @y (vp @ vg)
O, 01y 1 g )1<e<T t=1Wp ¥ Vg
T
T~ @iy letét | p
t=—

BT~ @ N0, T 1

i~ @y N (25 o, 07 d) | BT, 7]

@ + weakly informative priors
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Statistical Questions

BME Template model

p.alc 2)1

(p.alc 2)m
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1
Individual i
factors :
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1
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How to learn the parameters ? the MAP Estimator :

Parameters 0 are estimated by maximum posterior likelihood :
6 = argmax P(0|y)

where 0 € © = { (o, 02, T,)|la € R*, 62 >0, T, € Sym;kg L(R) }.
Sym;kg .(R) is the set of positive definite symmetric matrices.

Let ©, = { 0, € © | Ep(log q(y|0+)) = supgco Erp(log q(y|0))} where P
denotes the distribution governing the observations.
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How to do in practice?

Since f3f are unobserved variables, a natural approach to reach the MAP
estimator is the EM algorithm.

Iteration / of the algorithm :
E Step : Compute the posterior law on 5;,i =1,...,n.

M Step : Parameter update :
0141 = argmax E [log (6, 57, y1') y1', 01] -

BUT : the E step is not tractable!
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E step : First solution proposed :

Fast approximation with modes :

o E Step :
vik(dBi) = ép:, Vi =1,...,n. BF maximise the conditional
distribution on 5 with the current parameters :

B =arg m;x log q(B|Xi; 0k)

@ M Step : Parameter update : uses the “completed observations”
Ors1 = argmaxlog q((57)1, X1 6).
September 2018 66 / 82
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Details of the maximisation step :

Geometry :

1
Og1+1=Tg 141 = m("[ﬁﬁt]l + ang).
g
where

168 = ,1,; [ s5tuie)as.

is the empirical covariance matrix with respect to the posterior density
function.

— Importance of the prior!
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Details of the maximisation step :

Photometry :

o = (o) we] +ormt) (](0)' Y] +ormitnn)
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E step : First solution proposed : Fast approximation with modes :

o v} /(dBj) = 0+, Bj maximise the conditional distribution on 3 for
each component :

ﬁi*;r = arg mBaX |Og q(6|04/,7—a Ol,r, rg,l,Ta Yi, T) =

)1 ‘
argmﬁ!n §5t( Fgir) B+ = ;—K,‘fa/,f|2 )

202

I,

@ Maximise the conditional distribution on 7 given the 3.
o Pick g*

iT*"
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Advantages and drawbacks :

o Computation of 37 : standard gradient descent.

@ Reduce the EM algorithm to an iterative maximisation of the joint
density.

e Highly sensitive to noise (see experiments)
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Our solution : MCMC- Stochastic Approximation EM algorithm :

Iteration k — k + 1 of the algorithm :

o Simulation step : Bt ~ My, (3, )
where I'ng(,Bk, -) is a transition probability of a convergent Markov
Chain having the posterior distribution as stationary distribution,

@ Stochastic approximation :

Qur1(0) = Qu(8) + Axflog g(X, B;6) — Qu(6)]
where (Ay) is a decreasing sequence of positive step-sizes.

e Maximisation step : 0,1 = arg max Qx+1(0)

[¥] Mg, (B',-) given by different samplers.
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Our solution : MCMC- Stochastic Approximation EM algorithm : (2) :

But!

@ All our models belong to the Exponential family,

(X, B 0) = exp (=4 () + (S(X. B), 6(6))}
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Our solution : MCMC- Stochastic Approximation EM algorithm : (2) :

But!

@ All our models belong to the Exponential family,

(X, B 0) = exp (=4 () + (S(X. B), 6(6))}

@ Stochastic approximation

Qur1(0) = Qu(0) + Axflog g(X, B 0) — Qu(6)]
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Our solution : MCMC- Stochastic Approximation EM algorithm : (2) :

But!

@ All our models belong to the Exponential family,

(X, B 0) = exp (=4 () + (S(X. B), 6(6))}

@ Stochastic approximation

Sk+1 = Sk + Ay (S(Xﬁk’q) — 5k>
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Our solution : MCMC- Stochastic Approximation EM algorithm : (2) :

But!

@ All our models belong to the Exponential family,

(X, B 0) = exp (=4 () + (S(X. B), 6(6))}

@ Stochastic approximation

Sk+1 = Sk + Ay (S(Xﬁk’q) — 5k>

o It exists # (independent of k) such as

Ok1 = O(skr1) -
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Our solution : MCMC- Stochastic Approximation EM algorithm : (2) :

But!

@ All our models belong to the Exponential family,

(X, B 0) = exp {—1 () + (S(X. B). 6(6))}

@ Stochastic approximation
Sk+1 = Sk + D (S(X,ﬁkﬂ) - 5k>
o It exists  (independent of k) such as
Ok+1 = §(5k+1) .

Very simple algorithm!
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Theoretical Results :

With these models and algorithms we have proved some important
asymptotic results :

Conditions :

@ Smoothness of the model (classic conditions for convergence of
stochastic approximation and EM)

@ In case of AMALA sampler : condition for its geometric ergodicity
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Theoretical Results :

With these models and algorithms we have proved some important
asymptotic results :

Conditions :

@ Smoothness of the model (classic conditions for convergence of
stochastic approximation and EM)

@ In case of AMALA sampler : condition for its geometric ergodicity
Results :

e Convergence of (sk) a.s. towards critical point of mean field of the
problem

o Convergence of estimated parameters (6y) a.s. towards critical point
of observed likelihood

e Central limit theorem for (6y)
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Statistical Questions Experiments

Training sets

0000060000000 Q000C0OGOETERTERUEAEOLORDOERD
FOTTUEL T LR T r it et I SRR TR PP RN AR RN
2282332232234 R23A222 2200 0ERI0R2NARAAARELE
3338333333333333333308030838080534823288
4 QUYL Ry d Yy YERRECR AUV R R EE R Y
S(5S58555555 (565455 S3BEGNRGEHEUBEUBNEEERE
bUbbllOCECbLlblbCbbECbBREENNECECEEEURERERE
T 711777277121 777700 RRRAARBIRAEIARITA2
LRSS SR A R R ER AR ARRA R A A i R Y
1939992999997 7999 177k RERRARARATRRAIRRITE

FIGURE — Left : Training set (inverse video). Right : Noisy training set (inverse
video).
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Statistical Questions Experiments

MCMC-SAEM algorithm :

Algorithm/
Noise level

FAM-EM

No Noise

012131y
MARLE

Noisy
of Variance 1

A

HEEE]

H.G.-SAEM

MO
01121314

MAH

AMALA-SAEM

01 12131/HO0 21314

MO

OLL203]4
MAKEE

FIGURE — Estimated templates using different algorithms and two level of noise.
The training set includes 20 images per digit.
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Statistical Questions Experiments

Chiffre 0 sans bruit itérations 3, 10 et 150 Chifite 0 sans bruit itérations 3, 10 et 150
2500 3000 2500 3000

4000 4000
2000 2000 2000 3000
1500 2000 1500 2000
2000 2000
1000 1000 1000 1000
500 1000 500 1000
a 0 0 0 0 0
0.635 1164 0.58 06 0.62 [l 022 0.23 0.635 064 058 [ik:7 0.62 oz 022 023
Chifire 0 avec bruit itérations 3, 10 et 150 Chifire 0 aves bruit itérations 3, 10 et 150
10000 3000 3000 10000 3000 3000
8000 8000
P 2000 2000 5000 2000 2000
550 1000 1000 400 1000 1000
2000 2000
0 I 0 0 0 I 0 0
101 10z 10114 1.006 1.008 1.01 0.93 1 1011 1Mz 10114 1006 1.008 1.01 0.93 i

FIGURE — Evolution of the estimation of the noise variance along the SAEM
iterations. Test of convergence towards the Gaussian distribution of the estimated
parameters.
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Statistical Questions Experiments

Classification rates :

Error rate “EM-Mode” est. | SAEM-MCMC est.
Mode classifier 40.71 22.52
MCMC classifier - 17.07

TABLE — Error rate with respect to the estimation and classification methods.
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Statistical Questions Experiments

3D dendrite spines :

110

FIGURE — Estimated template with the one component model : Left : 3D

representation of the grey level volume. Right : 3D representation of the
thresholded volume.
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Statistical Questions Experiments

3D dendrite spines :

F1GURE — Estimated templates of the two components with the 30 image
training set : 3D representation after thresholding.
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Statistical Questions Experiments

3D dendrite spines :

F1GURE — 3D view of eight synthetic data. The estimated template shown in

Figure 7 is randomly deformation with respect to the estimated covariance
matrix. The results are then thresholded in order to get a binary volume.
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One step further

One step further?

Models of longitudinal data!
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