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Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 1 / 82



Introduction

Outline

1. Introduction to Computational Anatomy

Goals
Mathematical tools
Databases
Deformable Template framework

2. Registration technics

3. Statistical analysis of the deformations

4. Bayesian Modelling for template estimation
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Introduction to CA

Goals

To design mathematical methods and algorithms to model and
analyse the anatomy

Characterise anatomical shapes :

Estimate representative organs within groups (anatomical invariants)

Analysis of populations :

Establish “normal” variability

Classification / Discrimination :

Classify pathologies from structural deviations

Learn the temporal evolution (growth, evolution of a disease) :

Model organ development across time

Segmentation, prediction, help therapy :

Build prior knowledge to simulate new anatomies, segment areas or
organs in new patient, predict from the shape of an organ the
evolution of a disease (through clinical variables for example)
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Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 3 / 82



Introduction to CA

Goals

To design mathematical methods and algorithms to model and
analyse the anatomy

Characterise anatomical shapes :
Estimate representative organs within groups (anatomical invariants)

Analysis of populations :
Establish “normal” variability

Classification / Discrimination :
Classify pathologies from structural deviations

Learn the temporal evolution (growth, evolution of a disease) :

Model organ development across time

Segmentation, prediction, help therapy :

Build prior knowledge to simulate new anatomies, segment areas or
organs in new patient, predict from the shape of an organ the
evolution of a disease (through clinical variables for example)
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Introduction to CA

Mathematical tools

Characterise anatomical shapes :

Geometry

Analysis of populations :

Statistical Modelling and differential
geometry

Classification / Discrimination :

Statistical analysis

Learn the temporal evolution (growth, evolution of a disease) :

Statistical learning

Segmentation, prediction, help therapy :

Functional analysis

Etc...
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Introduction to CA

Kinds of data

Images (grey level, tensors, etc)
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Introduction to CA

Kinds of data

Anatomical landmarks : anatomical points, fibres, gyri, etc
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Introduction to CA

Kinds of data

Meshed surfaces (with point correspondence or not)
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Introduction to CA

Kinds of data

Clinical variables related to the data (age, diagnosis, physiological
parameters, etc)
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Introduction to CA

NEED : compare these elements in a mathematical way

−→ Computational anatomy is the correct setting

−→ Requires models of the data

Deformable Template Model (Genander, ’80)
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Introduction to CA

The idea of Deformable Template Model

Compare two observations via the quantification of the deformation
from one to the other (D’Arcy Thompson, 1917)

Registration

/ Variance

Each element of a population is a smooth deformation of a template

Template estimation

/ Mean
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Registration

Outline

1. Introduction to Computational Anatomy

2. Registration technics

The Registration issue
First approach : Rigid body transformations
Next step : Linear Models
The diffeomorphic setting

3. Statistical analysis of the deformations

4. Bayesian Modelling for template estimation
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Registration

The Registration issue

Deformable template mathematical model : I0 and I1 two data :

I1 'φ . IO

How to quantify the difference between the two objects ?

What kind of deformations ?

How to apply the deformation to an object ?

Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 13 / 82



Registration

The Registration issue

Deformable template mathematical model : I0 and I1 two data :

I1 'φ . IO

How to quantify the difference between the two objects ?

What kind of deformations ?

How to apply the deformation to an object ?
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Registration

Object distances

Difference between two objects : (Same for the following solutions)

Images : L2 difference of the two functions

‖I1 − φ . I0‖2
2

Landmarks : Sum of the Euclidean distance between points :∑
1≤i≤N

‖x1
i − φ . x0

i ‖2
2

Unlabeled landmark set, meshes, fibers : Requires to embed the
objects into a mathematical space where “addition, mean” and other
mathematical operations are stable (see Jean) !
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Registration

Rigid body or affine registration

Translation, rotation, scaling. Finite dimensional deformation but very
restrictive.

First improvement : φ = Affine transformation

Application of the deformation to :

Images : φ . I0 = I0 ◦ φ−1

→ Image support is deformed, grey levels are transported

Landmarks : φ . (xi )1≤i≤N = (φ(xi ))1≤i≤N

Others : see Jean !
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Registration

Rigid body registration

Easy parametrisation of φ → Fast computations

Restricted deformations

No affine transformation to match these objects : Need for non linear
deformations
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Registration

Linearised deformations

Same difference between two objects

Idea : each pixel/voxel/point has its own movement

φ = Id + v

where v ∈ V space of smooth vector fields typically Reproducing
Kernel Hilbert Space (RKHS)

Application of the deformation to :

Images : φ . I0 = I0(Id−v)
→ Image support is deformed by Id − v ' φ−1,
grey levels are transported

Landmarks : φ . (xi )1≤i≤N = (xi+v(xi ))1≤i≤N
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Registration

Linearised deformations

φ only depends on v → Explicit parametrisation

Relevant for small deformations (where Id − v ' φ−1 is valid)

No invertibility guaranteed : overlaps may appear → some tissue may
disappear

Need of a diffeomorphic condition on φ
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Registration LDDMM

LDDMM framework

Let Ω ∈ Rd be an open set.
The framework defines

a class of objects O (eg : images I : Ω→ R, landmarks (xi )1≤i≤N ,...)

a class of diffeomorphic deformations φ : Ω→ Ω, D

a specific group action
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Registration LDDMM

LDDMM framework : The group of diffeomorphisms

At each time step the deformation is a “small deformation” :

φti+∆ti = Id + vti

Final deformation φ1 = φtT ◦ ... ◦ φt1 ◦ φ0 (
T∑
i=1

∆ti = 1)

φ0 = Id (no deformation to start with)

When ∆t → 0, φt solution of :

The flow equation :

{ dφvt
dt = vt ◦ φvt
φv0 = Id
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Registration LDDMM

LDDMM framework : The group of diffeomorphisms

If v ∈ V , with V “admissible space”, then :

Existence and uniqueness of the solution of the flow equation

The set D = {φv1 , v ∈ L2([0, 1],V )} is a subgroup of
diffeomorphisms on Ω

D is equipped with a right-invariant metric :
d(φ, ψ) = d(Id , ψ ◦ φ−1)

It defines a group action : φv1 . I = I ′, φv1 ∈ D and I , I ′ ∈ O

and a distance between two objects O0 and O1 is computed via the
group action :

d(O0,O1) = inf
vt∈V ,φv1 (O0)=O1

d(Id , φv1)
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Registration LDDMM

LDDMM framework : The group of diffeomorphisms

Existence, uniqueness and regularity (diffeomorphism) of the flow φv

guaranteed for (vt)t∈[0,1] such as∫ 1

0
‖vt‖2

V dt <∞ .

Then : d(O0,O1) = inf
vt∈V ,φv1 (O0)=O1

{
∫ 1

0 ||vt ||
2
V dt}
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Registration LDDMM

LDDMM framework : The Matching problem

How to match one object onto another ?

Group action ⇒ a way to apply the deformation and stay in O

+

A distance between diffeomorphic objects

: deformation cost

+

A similarity term between objects

: data attachment term

=

An energy to minimise :

E (v) =
1

2

∫ 1

0
‖vt‖2

V dt︸ ︷︷ ︸
deformation cost

+
1

2σ2︸︷︷︸
tradeoff parameter

× |I1 − I0 ◦ (φv1)−1|2︸ ︷︷ ︸
data attachment term
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∫ 1

0
‖vt‖2

V dt︸ ︷︷ ︸
deformation cost

+
1

2σ2︸︷︷︸
tradeoff parameter

× |I1 − I0 ◦ (φv1)−1|2︸ ︷︷ ︸
data attachment term
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Registration LDDMM

LDDMM framework : From Hamiltonian to Shooting

The Hamiltonian formulation :

Let V be a RKHS which kernel KV : (example for N landmarks)

∃ (pi (t))1≤i≤N ∈ Rn such that vt(x) =
N∑
i=1

KV (xi (t), x)pi (t)

(pi (t))1≤i≤N = momenta of the landmarks at time t

Let H(x , p) = 1
2〈p,K (x)p〉 = Hamiltonian

Then 
dx(t)
dt = KV (x(t))p(t) = ∂H

∂p (x , p)

dp(t)
dt = −1

2∇x(t)KV (p(t), p(t)) = −∂H
∂x (x , p)

Hamiltonian constant on the geodesics
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Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 24 / 82



Registration LDDMM

LDDMM framework : From Hamiltonian to Shooting

The Hamiltonian formulation :

Let V be a RKHS which kernel KV : (example for N landmarks)

∃ (pi (t))1≤i≤N ∈ Rn such that vt(x) =
N∑
i=1

KV (xi (t), x)pi (t)

(pi (t))1≤i≤N = momenta of the landmarks at time t

Let H(x , p) = 1
2〈p,K (x)p〉 = Hamiltonian

Then 
dx(t)
dt = KV (x(t))p(t) = ∂H

∂p (x , p)

dp(t)
dt = −1

2∇x(t)KV (p(t), p(t)) = −∂H
∂x (x , p)

Hamiltonian constant on the geodesics
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Registration LDDMM

LDDMM framework : From Hamiltonian to Shooting

Consequences :

⇒ Parametrisation of the problem by only x0 (known) and p0

For images : the momentum supported by the gradient of the image
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Registration LDDMM

LDDMM framework : Example of deformations
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Registration LDDMM

So now ?

Can do statistics on either the objects or the deformations !
For example :

Global shape analysis

Local deformation pattern detection
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Statistical analysis of the deformations

Outline

1. Introduction to Computational Anatomy

2. Registration technics

3. Statistical analysis of the deformations

Noisy ICA general model
Gaussian Graphical Models

4. Bayesian Modelling for template estimation
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Statistical analysis of the deformations

Noisy ICA : Goal of the decomposition :

Data point cloud

Mixture of two Gaussian distributions

Data : one point cloud

Goal : explain these data

How : Extracting the “sources” which had generated the data
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Statistical analysis of the deformations

Principal Component Analysis (PCA)

Orthogonal direction of maximum variance :

Assumes a Gaussian distribution : X = µ+ Σ1/2ε, ε ∼ N (0, Id).

Result from PCA (black lines) Resampling from the model

Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 30 / 82



Statistical analysis of the deformations

Independent Component Analysis (ICA)

Interpretation of the data (6= Description)

Finds sources which may have generated the cloud

Accounts for non Gaussian distributions (more flexible model)

First estimated source

Second estimated source
Resampling form the model
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Statistical analysis of the deformations

Difference between PCA and ICA

PCA ICA

Maximum variance axes Source separation

Geometrical (orthogonal axis) Statistical (source points in the plane)

Description of data Explanation and interpretation
Gaussian distribution Many other possible distributions

only e.g. mixtures, continuous or discrete
(see later)
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Statistical analysis of the deformations ICA model

General hierarchical model :

Xi = Aβi + σεi

∗ Observations : X n
1 in (Rd)n

∗ Source matrix : A called decomposition matrix
∗ Gaussian noise : σεi
∗ Independent components : βi ∈ Rp, p << d
→ random vector with independent coordinates

βn
1 hidden variables.

Model : for all images Xi , 1 ≤ i ≤ n
βi ,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi .

Various choices of the distribution νη on the independent
components
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Statistical analysis of the deformations ICA model

Various examples of distributions :

Independent Factor analysis
βi ,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi

For identifiability, νη cannot be Gaussian

νη is a mixture of K 1D Gaussian distributions
N (mk , 1), k = 1, ..,K with weights (wk)1≤k≤K .

η = (mk ,wk)1≤k≤K

θ = (A, σ2, (mk ,wk)1≤k≤K )
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Statistical analysis of the deformations ICA model

Various examples of distributions :

Continuous distributions
βi ,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi

νη is either :

Logistic Log(1/2),
Laplacian,
Exponentially scaled Gaussian(EG) : βj

i = s ji Y
j
i where

Y ∼ N (µ, Id) and µ = (µ, . . . , µ) ; s1
i , . . . , s

p
i are independent Exp(1),

also independent from Y (sub-exponential tail)

η = ∅ or µ

θ = (A, σ2) or θ = (A, σ2, µ)

Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 34 / 82



Statistical analysis of the deformations ICA model

Various examples of distributions :

Discrete distributions
βi ,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi

Idea : Introduce a switch to cancel some of the decomposition vectors

→ Either binary (”on/off”) or ternary (activate, inhibit, remove)

Bernoulli-censored Gaussian (BG) : βj = bjY j with bj ∼ B(α), Y is
a Gaussian vector with distribution N (µ, Id).
Exponentially scaled Bernoulli-censored Gaussian (EBG) : mix of
EG and BG
Exponentially-scaled ternary distribution (ET) : βj = s jY j , where
s1, . . . , sp are i.i.d. Exp(1). γ = P(Y j = −1) = P(Y j = 1), providing a
symmetric distribution for the components of Y .

θ = (A, σ2, µ, α, γ)
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Statistical analysis of the deformations Estimation

ML Estimator :

Parameters θ are estimated by maximum likelihood :

θ̂ = arg maxP(X ; θ)

βn1 unobserved random variables + Maximise a likelihood

→ EM algorithm (Expectation - Maximisation)

Iteration k of the algorithm :
E Step : Compute the posterior distribution of βi given Xi and θl :
νi ,k(dβi )

M Step : Parameter update :

θk+1 = arg max
θ

Eνn1,k [log q(βn1 ,X
n
1 ; θ)|] .

BUT : E step not computationally tractable !
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Statistical analysis of the deformations Estimation

Others :

FastICA :

Employs a fixed point algorithm to minimise the mutual information
between the coordinates of A−1X

Particle filtering within EM :

Approximates the posterior distribution using particle filtering
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Statistical analysis of the deformations Experiments

Experiments

Two source images

Samples of the four training sets different level of noise. From left to right and
top to bottom : σ = 0.1, 0.5, 0.8, 1.5
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Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 37 / 82



Statistical analysis of the deformations Experiments

Results of the PCA decomposition

σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

Cumulative eigen values of the PCA decomposition

Two first Principal Components (orthogonal images).
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Statistical analysis of the deformations Experiments

Comparison : 30 images per training set

Model/Algo σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

FAM-EM/Log

SAEM/Log

SAEM/IFA

EM/IFA

SAEM/BG

FastICA
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Statistical analysis of the deformations Experiments

Comparison : 50 images per training set

Model/Algo σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

FAM-EM/Log

SAEM/Log

SAEM/IFA

EM/IFA

SAEM/BG

FastICA
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Statistical analysis of the deformations Experiments

Comparison : 100 images per training set

Model/Algo σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

FAM-EM/Log

SAEM/Log

SAEM/IFA

EM/IFA

SAEM/BG

FastICA
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Statistical analysis of the deformations Real databases

Patches of faces from Caltech101 database

100 random images picked from the 10, 000 images used as the training set.
These images are patches extracted from the face images of the Caltech101 data

base. Each image is a grey level image of size 13× 13.
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Statistical analysis of the deformations Real databases

Patches of faces from Caltech101 database

100 decomposition vectors from 2 models. Left : Log-ICA. Right : BG-ICA.
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Statistical analysis of the deformations Real databases

101 hippocampus deformations (3 populations : Ctrl - Mild AD - AD)

Mean and five decomposition vectors estimated with L-ICA (left) and ET-ICA
(right). Each image has its own colorbar to highlight the major patterns.
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Statistical analysis of the deformations Real databases

101 hippocampus deformations (3 populations : Ctrl - Mild AD - AD)

Ctrl/AD Ctrl/mild AD

Model L-ICA BG-ICA L-ICA BG-ICA

Mean 0.31 ×10−3 0.33 ×10−3 9.0 ×10−3 1.09 ×10−2

Std dev. 0.16 ×10−3 0.25 ×10−3 3.8 ×10−3 4.6 7.6 ×10−3

Table – Mean and standard deviation of the p-values for the two models with
the decomposition vectors. Means and standard deviations are computed over 50
runs to separate the Controls from the AD group (left columns) and to separate
the Controls from the mild AD group (right columns). PCA p-values : 0.3× 10−3

and 7.7× 10−3 using 95% of the cumulative variance.
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Statistical analysis of the deformations Real databases

What more can we look for ?

Relations between regions of the brain or an anatomical structure

Such as : correlation patterns

Example : computation of the correlation matrix using a PCA
decomposition

Then highlight the most important by thresholding

Correlations describe the global statistical dependencies between
variables

= both direct and indirect interactions
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Statistical analysis of the deformations Real databases

Correlation vs Conditional Correlation

Under Gaussian assumption

Traffic jam intensity correlated
to Number of snowmen in town
due to snowstorm.

But conditionally on Snow,
Number of snowmen is
independent of Traffic jams

⇔ No edge between Traffic jam
and Snowmen random variables
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Statistical analysis of the deformations Real databases

Why do we need sparsity ?

Only few of these direct interaction are important

No post processing

Introduce sparsity into the modelling

+ high-dimension-low-sample-size paradigm

Although the underlying real graph is not sparse, perform a sparse
estimation of its structure

Significant edges only appear and estimation more stable
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Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider

p points on a given shape = nodes of the graph

On these points, we observe n random responses

The p nodes of the graph are thus identified to p random variables
denoted X = (X1, ...,Xp)

X assumed to be distributed as a multivariate Gaussian Np(0,Σ)

There exists an edge between nodes a and b if and only if the
variables Xa and Xb are dependent given all the remaining
variables

Conditional correlations given by non-zero entries of Σ−1

Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 49 / 82



Statistical analysis of the deformations Real databases

The GGM statistical Model

Consider

p points on a given shape = nodes of the graph

On these points, we observe n random responses

The p nodes of the graph are thus identified to p random variables
denoted X = (X1, ...,Xp)

X assumed to be distributed as a multivariate Gaussian Np(0,Σ)

There exists an edge between nodes a and b if and only if the
variables Xa and Xb are dependent given all the remaining
variables

Conditional correlations given by non-zero entries of Σ−1
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Introducing a neighbourhood prior

Introducing a neighbourhood prior

The neighbouring points of the graph are very likely to be
conditionally correlated.

Information known a priori −→ Into the statistical model

New data : Neighbouring graph G0

There are correlations between these points

But we are not estimating them rather looking for the other ones
= Long distance conditional correlations

Our idea : Do the estimation in the orthogonal space of G0

Xa − Xma(XT
ma
Xma)−1XT

ma
Xa , (1)

May be too strong constrain (numerically un-invertible) −→ alleviate
through :

Xa − Xma(XT
ma
Xma + γ0Id)−1XT

ma
Xa . (2)
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Experiments

No prior

Figure – Examples of the training set. The colour depends on the intensity of
the Jacobian of the deformation. Blue means a contraction and red dilatation.
The intensity itself is not important but rather its relative value with respect to
the others.
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Experiments

No prior

Lasso + Or Lasso + And Enet + Or Enet + And
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Experiments

With prior

Figure – Two examples of neighbourhood graphs we used. Left :
3nearest-neighbour graph. Right : neighbours have Euclidean distance below a
given threshold.

Note : User’s choice : you can add connection that you know.
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Experiments

LASSO
Orth
Or

LASSO
Orth
And

LASSO
Ridge
Or

LASSO
Ridge
And

Enet
Orth
Or

Enet
Orth
And

Enet
Ridge
Or

Enet
Ridge
And

Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 54 / 82



Experiments

Clustering of the Shape : using spectral clustering
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Experiments

Population comparison

Without prior With prior

Controls

AD patients
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Statistical Questions

Outline

1. Introduction to Computational Anatomy

2. Registration technics

3. Statistical analysis of the deformations

4. Bayesian Modelling for template estimation

Mathematical framework for deformable models
Past approaches to compute a population average
Generative statistical models
Statistical estimation of the model parameters
Experiments
And next ?
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Statistical Questions

What are the mean and the variability

Matching depends on the template I0

What is a good template ?

One of them ?

Which one and why this one ?
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Statistical Questions

What are the mean and the variability

Other question (related)

Let (Oi )1≤i≤n be a homogeneous population (control or AD, or
autistic, etc)

Problem : Oi lives in a manifold

Question : how to compute a mean ? And population normal
variability ?
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Statistical Questions

BME Template model

Population of n grey level images yn1

Observation model :

Each observation y belongs to an unknown component t
Conditional on the image membership to component t,

∃ z : R3 → R3 an unobserved deformation field
a continuously defined template It : R3 → R
a Gaussian centred white noise ε of variance σ2

t

such that

y(s) = It(xs − z(xs)) + εt(s) = z . It(s) + ε(s) ,

Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 60 / 82



Statistical Questions

BME Template model

Population of n grey level images yn1
Observation model :

Each observation y belongs to an unknown component t
Conditional on the image membership to component t,

∃ z : R3 → R3 an unobserved deformation field
a continuously defined template It : R3 → R
a Gaussian centred white noise ε of variance σ2

t

such that

y(s) = It(xs − z(xs)) + εt(s) = z . It(s) + ε(s) ,
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Statistical Questions

BME Template model

Template and deformation model :

It ∈ Vp RKHS with kernel Kp

Spline model : Given (pk)1≤k≤kp , ∃ αt ∈ Rkp such that :

It(x) = Kpαt(x), =
kp∑
k=1

Kp(x , pk)αt(k)

Same spline model for the deformation :
z ∈ Vg RKHS with kernel Kg

Given (gk)1≤k≤kg ∃ (β(1), β(2)) ∈ Rkg × Rkg such that :

z(x) = (Kgβ)(x) =
kg∑
k=1

Kg (x , gk)(β(1)(k), β(2)(k)).
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Statistical Questions

BME Template model

Hierarchical generative model :



ρ ∼ νρ,

θ = (αt , σ
2
t , Γ

t
g )1≤t≤T ∼ ⊗T

t=1(νp ⊗ νg )

τn1 ∼ ⊗n
i=1

T∑
t=1

ρtδt | ρ

βn1 ∼ ⊗n
i=1N (0, Γτig )| τn1

yn1 ∼ ⊗n
i=1N (zβi Iατi , σ

2
τi
IdΛ) | βn1 , τn1

weights prior

parameters priors

pick labels for images

draw deformations
from τn1

draw images from βn1
and θτ

+ weakly informative priors
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Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 62 / 82



Statistical Questions

BME Template model

Hierarchical generative model :



ρ ∼ νρ,

θ = (αt , σ
2
t , Γ

t
g )1≤t≤T ∼ ⊗T

t=1(νp ⊗ νg )

τn1 ∼ ⊗n
i=1

T∑
t=1

ρtδt | ρ

βn1 ∼ ⊗n
i=1N (0, Γτig )| τn1

yn1 ∼ ⊗n
i=1N (zβi Iατi , σ

2
τi
IdΛ) | βn1 , τn1

weights prior

parameters priors

pick labels for images

draw deformations
from τn1

draw images from βn1
and θτ

+ weakly informative priors
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Statistical Questions

BME Template model
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Statistical Questions MCMC-SAEM algorithm

How to learn the parameters ? the MAP Estimator :

Parameters θ are estimated by maximum posterior likelihood :

θ̂ = argmaxP(θ|y)

where θ ∈ Θ = { (α, σ2, Γg )|α ∈ Rkp , σ2 > 0, Γg ∈ Sym+
2kg ,∗(R) }.

Sym+
2kg ,∗(R) is the set of positive definite symmetric matrices.

Let Θ∗ = { θ∗ ∈ Θ | EP(log q(y |θ∗)) = supθ∈Θ EP(log q(y |θ))} where P
denotes the distribution governing the observations.
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Statistical Questions MCMC-SAEM algorithm

How to do in practice ?

Since βn1 are unobserved variables, a natural approach to reach the MAP
estimator is the EM algorithm.

Iteration l of the algorithm :
E Step : Compute the posterior law on βi , i = 1, . . . , n.

M Step : Parameter update :

θl+1 = arg max
θ

E [log q(θ, βn1 , y
n
1 )|yn1 , θl ] .

BUT : the E step is not tractable !
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Statistical Questions MCMC-SAEM algorithm

E step : First solution proposed :

Fast approximation with modes :

E Step :

νi ,k(dβi ) ' δβ∗
i

, ∀i = 1, . . . , n. β∗i maximise the conditional
distribution on β with the current parameters :

β∗i = arg max
β

log q(β|Xi ; θk)

M Step : Parameter update : uses the “completed observations”

θk+1 = arg max
θ

log q((β∗)n1,X
n
1 ; θ).
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Statistical Questions MCMC-SAEM algorithm

Details of the maximisation step :

Geometry :

θg ,l+1 = Γg ,l+1 =
1

n + ag
(n[ββt ]l + agΣg ).

where

[ββt ]l =
1

n

n∑
i=1

∫
ββtνl ,i (β)dβ,

is the empirical covariance matrix with respect to the posterior density
function.
→ Importance of the prior !
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Statistical Questions MCMC-SAEM algorithm

Details of the maximisation step :

Photometry :


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Statistical Questions MCMC-SAEM algorithm

E step : First solution proposed : Fast approximation with modes :

ν∗i ,l(dβi ) = δβ∗
i

, β∗i maximise the conditional distribution on β for
each component :

β∗i ,τ = arg max
β

log q(β|αl ,τ , σl ,τ , Γg ,l ,τ , yi , τ) =

arg min
β

{
1

2
βt(Γg ,l ,τ )−1β +

1

2σ2
l ,τ

|yi − Kβ
p αl ,τ |2

}
,

Maximise the conditional distribution on τ given the β∗i .

Pick β∗i ,τ∗ .
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Statistical Questions MCMC-SAEM algorithm

Advantages and drawbacks :

Computation of β∗i : standard gradient descent.

Reduce the EM algorithm to an iterative maximisation of the joint
density.

Highly sensitive to noise (see experiments)
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Statistical Questions MCMC-SAEM algorithm

Our solution : MCMC- Stochastic Approximation EM algorithm :

Iteration k → k + 1 of the algorithm :

Simulation step : βk+1 ∼ Πθl (β
l , ·)

where Πθk (βk , ·) is a transition probability of a convergent Markov
Chain having the posterior distribution as stationary distribution,

Stochastic approximation :

Continuous function : need to be stored

Qk+1(θ) = Qk(θ) + ∆k [log q(X ,βk+1; θ)− Qk(θ)]

where (∆k) is a decreasing sequence of positive step-sizes.

Maximisation step : θk+1 = arg maxQk+1(θ)

[∗] Πθk (βl , ·) given by different samplers.
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Statistical Questions MCMC-SAEM algorithm

Our solution : MCMC- Stochastic Approximation EM algorithm : (2) :

But !

All our models belong to the Exponential family,

q(X ,βk+1; θ) = exp {−ψ(θ) + 〈S(X ,β), φ(θ)〉}

Stochastic approximation

It exists θ̂ (independent of k) such as

θk+1 = θ̂(sk+1) .
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Statistical Questions MCMC-SAEM algorithm
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Statistical Questions MCMC-SAEM algorithm

Our solution : MCMC- Stochastic Approximation EM algorithm : (2) :

But !

All our models belong to the Exponential family,

q(X ,βk+1; θ) = exp {−ψ(θ) + 〈S(X ,β), φ(θ)〉}

Stochastic approximation

sk+1 = sk + ∆k

(
S(X ,βk+1)− sk

)
It exists θ̂ (independent of k) such as

θk+1 = θ̂(sk+1) .

Very simple algorithm !
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Statistical Questions MCMC-SAEM algorithm

Theoretical Results :

With these models and algorithms we have proved some important
asymptotic results :

Conditions :

Smoothness of the model (classic conditions for convergence of
stochastic approximation and EM)

In case of AMALA sampler : condition for its geometric ergodicity

Results :

Convergence of (sk) a.s. towards critical point of mean field of the
problem

Convergence of estimated parameters (θk) a.s. towards critical point
of observed likelihood

Central limit theorem for (θk)
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Statistical Questions Experiments

Training sets

Figure – Left : Training set (inverse video). Right : Noisy training set (inverse
video).
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Statistical Questions Experiments

MCMC-SAEM algorithm :

Algorithm/
Noise level

FAM-EM H.G.-SAEM AMALA-SAEM

No Noise

Noisy
of Variance 1

Figure – Estimated templates using different algorithms and two level of noise.
The training set includes 20 images per digit.
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Statistical Questions Experiments

Estimated geometric variability

Figure – Synthetic samples generated with respect to the BME template model.
Left : No noise. Right : Noisy data.
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Statistical Questions Experiments

Figure – Evolution of the estimation of the noise variance along the SAEM
iterations. Test of convergence towards the Gaussian distribution of the estimated
parameters.

Stéphanie Allassonnière (Descartes) Computational Anatomy September 2018 77 / 82



Statistical Questions Experiments

Classification rates :

Error rate “EM-Mode” est. SAEM-MCMC est.

Mode classifier 40.71 22.52

MCMC classifier - 17.07

Table – Error rate with respect to the estimation and classification methods.
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Statistical Questions Experiments

3D dendrite spines :

Figure – Estimated template with the one component model : Left : 3D
representation of the grey level volume. Right : 3D representation of the
thresholded volume.
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Statistical Questions Experiments

3D dendrite spines :

Figure – Estimated templates of the two components with the 30 image
training set : 3D representation after thresholding.
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Statistical Questions Experiments

3D dendrite spines :

Figure – 3D view of eight synthetic data. The estimated template shown in
Figure 7 is randomly deformation with respect to the estimated covariance
matrix. The results are then thresholded in order to get a binary volume.
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One step further

One step further ?

Models of longitudinal data !
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